'll use the binomial approach. We need to calculate the probabilities that 9, 10 or 11
<span>people have brown eyes. The probability that any one person has brown eyes is 0.8, </span>
<span>so the probability that they don't is 1 - 0.8 = 0.2. So the appropriate binomial terms are </span>
<span>(11 C 9)(0.8)^9*(0.2)^2 + (11 C 10)(0.8)^10*(0.2)^1 + (11 C 11)(0.8)^11*(0.2)^0 = </span>
<span>0.2953 + 0.2362 + 0.0859 = 0.6174, or about 61.7 %. Since this is over 50%, it </span>
<span>is more likely than not that 9 of 11 randomly chosen people have brown eyes, at </span>
<span>least in this region. </span>
<span>Note that (n C r) = n!/((n-r)!*r!). So (11 C 9) = 55, (11 C 10) = 11 and (11 C 0) = 1.</span>
Answer:
$48
Step-by-step explanation:
16 x 3 = 48
Answer:
The perimeter of the drawing: 18 inches
The perimeter of the actual flower bed: 540 inches
If they were multiplied by 24 instead the actual perimeter of the flower bed would be 432 inches. The effect is that it decreases by 108 inches.
Step-by-step explanation:
Taking the 4 inches and 5 inches and multiplying them by 30 gets 120 by 150. If its a rectangle we will add together all 4 sides to get the perimeter of the actual one.
Answer:
The value of the standard error for the point estimate is of 0.0392.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean
and standard deviation 
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home.
This means that 
Give the value of the standard error for the point estimate.
This is s. So

The value of the standard error for the point estimate is of 0.0392.
It looks like the differential equation is

Check for exactness:

As is, the DE is not exact, so let's try to find an integrating factor <em>µ(x, y)</em> such that

*is* exact. If this modified DE is exact, then

We have

Notice that if we let <em>µ(x, y)</em> = <em>µ(x)</em> be independent of <em>y</em>, then <em>∂µ/∂y</em> = 0 and we can solve for <em>µ</em> :

The modified DE,

is now exact:

So we look for a solution of the form <em>F(x, y)</em> = <em>C</em>. This solution is such that

Integrate both sides of the first condition with respect to <em>x</em> :

Differentiate both sides of this with respect to <em>y</em> :

Then the general solution to the DE is
