Answer and Explanation:
Ribosomes are the primary structure for protein synthesis. They can be found in the rough endoplasmic reticulum or floating in the cytosol.
Free ribosomes are not attached to any cytoplasmic structure or organelle. They synthesize proteins only for internal cell use. Other ribosomes are attached to the membrane of the endoplasmic reticulum and they are in charge of synthesizing membrane proteins or exportation proteins. Free and attached ribosomes are identical and they can alternate their location. This means that although free ribosomes are floating in the cytosol, eventually, they can get attached to the endoplasmic reticulum membrane.
Synthesis of proteins that are destined to membrane or exportation starts in the cytoplasm with the production of a molecule portion known as a <u>signal aminoacidic sequence</u>. This signal sequence varies between 13 and 36 amino acids, is located in the <u>amino extreme</u> of the synthesizing protein, and when it reaches a certain length, it meets the <u>signal recognizing particle</u>. This particle joins the signal sequence of the protein and leads the synthesizing protein and associated ribosome to a specific region in the Rough endoplasmic reticulum where it continues the protein building. When they reach the membrane of the endoplasmic reticulum, the signal recognizing particle links to a receptor associated with a pore. Meanwhile, the ribosome keeps synthesizing the protein, and the enlarged polypeptidic chain goes forward the reticulum lumen through the pore. While this is happening, another enzyme cuts the signal sequence, an action that requires energy from the ATP hydrolysis. When the new protein synthesis is complete, the polypeptide is released into the reticulum lumen. Here it also happens the protein folding (which is possible by the formation of disulfide bridges of proteins are formed) and the initial stages of glycosylation (the oligosaccharide addition).
Once membrane proteins are folded in the interior of the endoplasmic reticulum, they are packaged into vesicles and sent to the Golgi complex, where it occurs the final association of carbohydrates with proteins. The Golgi complex sends proteins to their different destinies. Proteins destined to a certain place are packaged all together in the same vesicle and sent to the target organelle. In the case of membrane proteins, they are packaged in vesicles and sent to the cell membrane where they get incrusted.
There are certain signal sequences in the <u>carboxy-terminal extreme</u> of the protein that plays an important role during the transport of membrane proteins. A signal as simple as one amino acid in the c-terminal extreme is responsible for the correct transport of the molecule through the whole traject until it reaches the membrane.
Contacting a local hospital and asking them the percentage of the population that has blood type O will generate different results.
The factors that we have to consider why there is differing results are:
1) location of the hospital
2) nationality of their patients
3) number of their patients
I am assuming that the population that question is referring to is the number of patients in the local hospital. The bigger the population, the smaller the effect a unit has on the whole and vice versa.
I read an article that states that 37% of the U.S. population has O+ blood type. These people are usually of Hispanic descent or some Asian descent. So, if a hospital is in a locality that has a majority of Hispanic or Asian patients, its percentage will be higher than a hospital that is located in a Caucasian-populated area.
Aside from Type O+ (most common), blood types also include: O-, A+, A-, B+, B-, AB+, and AB- (rarest blood type)
Answer:
Logistic
Explanation:
As the newly mated queen inhabit the new habitat, the population of the ants would increase slowly first followed by a rapid increase in the population size. Once the population size reaches the carrying capacity, it is leveled off.
Carrying capacity is the maximum number of the individuals of a population that can be supported indefinitely by a habitat. Once the population reaches the carrying capacity, one or other required resources become limited which in turn does not allow the exponential growth of the population.
This type of population growth wherein the exponential increase is followed by leveling out the population as the carrying capacity is reached, is called logistic population growth.
Answer:
c
Explanation:
always were either one color or the other
I think is b so yeah if I’m wrong I’m really sorry