Sin(4x) - sin(8x)
sin(2(2x)) - sin(2(4x))
2sin(2x)cos(2x) - 2sin(4x)cos(4x)
2[sin(x)cos(x)][cos²(x) - sin²(x)] - [2sin(2(2x))cos(2(2x))]
{2[sin(x)cos³(x) - sin³(x)cos(x)]} - [2[2sin(2x)cos(2x)][cos²(x) - sin²(x)]]
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - {[2[2[sin(x)cos(x)][cos²(x) - sin²(x)]][cos²(x) - sin²(x)]}
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - [2[2[sin(x)cos(x)][cos⁴(x) - 2cos²(x)sin²(x) - sin⁴(x)]]]]
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - [2[2[sin(x)cos⁵(x) - 2sin³(x)cos³(x) + sin⁵(x)cos(x)]]]
2sin(x)cos³(x) - 2sin³(x)cos(x) - 4sin(x)cos⁵(x) + 8sin³(x)cos³(x) - 4sin⁵(x)cos(x)
What units were they originally on?do you have a picture of the graph with it?
Answer:
Step-by-step explanation:

Answer:
I'm pretty sure it is (a)
First we need to find the length. So we do 126/3 to get 42. The length is 42. Now to find perimeter we do 2(42)+2(3) or 42+42+3+3.
Both ways are right ways. The perimeter is 90 meters.
Hope that helps!!