53+53+53+53+53+53=318
if you add 53 six times you get 318
Hello!
1 minute 3 seconds = 63 seconds
We must found out 63 is 90% of what number, using the percentage formula:
90 * 100 / 63 = 70
70 seconds = 1 minute 10 seconds
So, Niki's time for one lap is 1 minute 10 seconds (70 seconds).
First picture)
I: 5x+2y=-4
II: -3x+2y=12
add I+(-1*II):
5x+2y-(-3x+2y)=-4-12
8x=-16
x=-2
insert x=-2 into I:
5*(-2)+2y=-4
-10+2y=-4
2y=6
y=3
(-2,3)
question 6)
I: totalcost=115=3*childs+5*adults
II: 33=adults+childs
33-adults=childs
insert childs into I:
115=3*(33-adults)+5*adults
115=99-3*adults+5*adults
16=2*adults
8=adults
insert adults into II:
33-8=childs
25=childs
so it's the last option
question 7)
a) y<6 and y>2 can also be written as 2<y<6, so solution 3 exist for example
b) y>6 and y>2 can also be written as 2<6<y, so solution 7 exist for example
c) y<6 and y<2 inverse of b: y<2<6, so for example 1
d) y>6 and y<2: y<2<6<y, this is impossible as y can be only either bigger or smaller than 2 or 6
so it's the last option
question 8)
I: x+y=12
II: x-y=6
subtract: I-II:
x+y-(x-y)=12-6
2y=6
y=3
insert y into I:
x+3=12
x=9
(9,3)
question 9)
I: x+y=6
II: x=y+5
if you take the x=y+5 definition of II and substitute it into I:
(y+5)+y=6
which is the second option :)
I’m not sure but i really really really like points!!!!
So for this problem, we will be using the exponential equation format, which is y = ab^x. The a variable is the initial value, and the b variable is the growth/decay.
Since our touchscreen starts off at a value of 1200, that will be our a variable.
Since the touchscreen is decaying in value by 25%, subtract 0.25 (25% in decimal form) from 1 to get 0.75. 0.75 is going to be your b variable.
In this case, time is our independent variable. Since we want to know the value 3 years from now, 3 is the x variable.
Using our info above, we can solve for y, which is the cost after x years.
In context, after 3 years the touchscreen will only be worth $506.