1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
7

Simplify (5x2 + 3x + 4) − (2x2 − 6x + 3)

Mathematics
2 answers:
dangina [55]3 years ago
5 0
Answer is <span>7x^2-3x+7
hope this helps</span>
Zigmanuir [339]3 years ago
3 0
(10+3x+4) -( 4-6x+3)
14+3x-(7-6x)
14+3x-7+6x
7+9x
You might be interested in
Helpppppp now plzzzzzzzzz
WINSTONCH [101]
Getting a new job
Getting a job, birthday
8 0
2 years ago
Simplify <br>#hope <br>need your help​
EleoNora [17]

Answer: brainliest please

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Sanjay read 56 pages of his book this weekend.This is 35% of the pages in the book.How many pages are in Sanjays book?
Maurinko [17]
1. 56 : 35 = 1.6
2. 1.6* 100 = 160
3. The answer is 160
3 0
3 years ago
Use the image below and find the missing angles
Colt1911 [192]

Step-by-step explanation:

w = 34° (alternate interior angles)

x = 34° (vertically opposite angles)

y = 101°

z = 79° (corresponding angles)

7 0
3 years ago
Other questions:
  • Which equation correctly applies the distributive property? ​ 2.4⋅(−3.4)⋅(−1.25)=−3.4⋅2.4⋅(−1.25) ​ ​ −2.5⋅(4⋅3.67)=(−2.5⋅4)⋅3.6
    14·2 answers
  • How do you write 3/6 in the simplest form
    13·1 answer
  • Tom spent 153 minutes completing a race. He walked 63 minutes and jogged the rest. What is the ratio of time he jogged to time h
    14·2 answers
  • Easy question, decent amount of points! 25 points, if you're curious!<br> Be quick or it is gone.
    9·1 answer
  • HELPPPP!!!! Come on guys help me plzzz
    8·1 answer
  • HELPPP :((( !!!<br><br>find the mean and median for the following.​
    15·2 answers
  • Help imma screammmmm
    9·2 answers
  • PLS HELP WILL GIVE BRAINLIAST !!!
    9·1 answer
  • Please help ill give brainliest answer!
    14·1 answer
  • For the graph y = 1 find the slope of a line that is perpendicular to it and the slope of a line parallel to it. Explain your an
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!