1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
6

15 Points What is the value of x, show your work.

Mathematics
2 answers:
Anna [14]3 years ago
7 0

Answer:

x=8cm

Step-by-step explanation:

32=4x

divide both sides by four to get 8=x

32/4=8

4x/4=x

8=x

Alenkasestr [34]3 years ago
5 0
X=8 32/4=8 the answer is 8
You might be interested in
4. A runner 1600 meters in 4 minutes. What was his rate of speed? *
Alika [10]
400 meters per minute

400m/s
4 0
3 years ago
Complete the steps to find the value of .<br> 72°<br> (7x + 24)
stellarik [79]

Answer: x ≈ 6.86°

Step-by-step explanation:

Firstly, set them equal to each other:

(7x + 24) = 72°

Subtract 24 from both sides:

7x = 48°

Divide both sides by 7:

x ≈ 6.857...

This can be rounded to:

x ≈ 6.86°

8 0
3 years ago
12) Write an equation for a line with a slope of 4 and a y-intercept of -3. Us
Gemiola [76]

Answer:

Y=-3x+4

Step-by-step explanation:

Plug it into the y=mx+b formula.

5 0
3 years ago
A tank with a capacity of 500 gal originally contains 200 gal of water with 100 lb of salt in the solution. Water containing1 lb
devlian [24]

Answer:

(a) The amount of salt in the tank at any time prior to the instant when the solution begins to overflow is \left(1-\frac{4000000}{\left(200+t\right)^3}\right)\left(200+t\right).

(b) The concentration (in lbs per gallon) when it is at the point of overflowing is \frac{121}{125}\:\frac{lb}{gal}.

(c) The theoretical limiting concentration if the tank has infinite capacity is 1\:\frac{lb}{gal}.

Step-by-step explanation:

This is a mixing problem. In these problems we will start with a substance that is dissolved in a liquid. Liquid will be entering and leaving a holding tank. The liquid entering the tank may or may not contain more of the substance dissolved in it. Liquid leaving the tank will of course contain the substance dissolved in it. If <em>Q(t)</em> gives the amount of the substance dissolved in the liquid in the tank at any time t we want to develop a differential equation that, when solved, will give us an expression for <em>Q(t)</em>.

The main equation that we’ll be using to model this situation is:

Rate of change of <em>Q(t)</em> = Rate at which <em>Q(t)</em> enters the tank – Rate at which <em>Q(t)</em> exits the tank

where,

Rate at which <em>Q(t)</em> enters the tank = (flow rate of liquid entering) x (concentration of substance in liquid entering)

Rate at which <em>Q(t)</em> exits the tank = (flow rate of liquid exiting) x (concentration of substance in liquid exiting)

Let C be the concentration of salt water solution in the tank (in \frac{lb}{gal}) and t the time (in minutes).

Since the solution being pumped in has concentration 1 \:\frac{lb}{gal} and it is being pumped in at a rate of 3 \:\frac{gal}{min}, this tells us that the rate of the salt entering the tank is

1 \:\frac{lb}{gal} \cdot 3 \:\frac{gal}{min}=3\:\frac{lb}{min}

But this describes the amount of salt entering the system. We need the concentration. To get this, we need to divide the amount of salt entering the tank by the volume of water already in the tank.

V(t) is the volume of brine in the tank at time t. To find it we know that at t = 0 there were 200 gallons, 3 gallons are added and 2 are drained, and the net increase is 1 gallons per second. So,

V(t)=200+t

Therefore,

The rate at which C(t) enters the tank is

\frac{3}{200+t}

The rate of the amount of salt leaving the tank is

C\:\frac{lb}{gal} \cdot 2 \:\frac{gal}{min}+C\:\frac{lb}{gal} \cdot 1\:\frac{gal}{min}=3C\:\frac{lb}{min}

and the rate at which C(t) exits the tank is

\frac{3C}{200+t}

Plugging this information in the main equation, our differential equation model is:

\frac{dC}{dt} =\frac{3}{200+t}-\frac{3C}{200+t}

Since we are told that the tank starts out with 200 gal of solution, containing 100 lb of salt, the initial concentration is

\frac{100 \:lb}{200 \:gal} =0.5\frac{\:lb}{\:gal}

Next, we solve the initial value problem

\frac{dC}{dt} =\frac{3-3C}{200+t}, \quad C(0)=\frac{1}{2}

\frac{dC}{dt} =\frac{3-3C}{200+t}\\\\\frac{dC}{3-3C} =\frac{dt}{200+t} \\\\\int \frac{dC}{3-3C} =\int\frac{dt}{200+t} \\\\-\frac{1}{3}\ln \left|3-3C\right|=\ln \left|200+t\right|+D\\\\

We solve for C(t)

C(t)=1+D(200+t)^{-3}

D is the constant of integration, to find it we use the initial condition C(0)=\frac{1}{2}

C(0)=1+D(200+0)^{-3}\\\frac{1}{2} =1+D(200+0)^{-3}\\D=-4000000

So the concentration of the solution in the tank at any time t (before the tank overflows) is

C(t)=1-4000000(200+t)^{-3}

(a) The amount of salt in the tank at any time prior to the instant when the solution begins to overflow is just the concentration of the solution times its volume

(1-4000000(200+t)^{-3})(200+t)\\\left(1-\frac{4000000}{\left(200+t\right)^3}\right)\left(200+t\right)

(b) Since the tank can hold 500 gallons, it will begin to overflow when the volume is exactly 500 gal.  We noticed before that the volume of the solution at time t is V(t)=200+t. Solving the equation

200+t=500\\t=300

tells us that the tank will begin to overflow at 300 minutes. Thus the concentration at that time is

C(300)=1-4000000(200+300)^{-3}\\\\C(300)= \frac{121}{125}\:\frac{lb}{gal}

(c) If the tank had infinite capacity the concentration would then converge to,

\lim_{t \to \infty} C(t)=  \lim_{t \to \infty} 1-4000000\left(200+t\right)^{-3}\\\\\lim _{t\to \infty \:}\left(1\right)-\lim _{t\to \infty \:}\left(4000000\left(200+t\right)^{-3}\right)\\\\1-0\\\\1

The theoretical limiting concentration if the tank has infinite capacity is 1\:\frac{lb}{gal}

4 0
4 years ago
Find the value of x to the nearest degree.
bazaltina [42]
I believe it’s D sorry if I’m wrong
6 0
3 years ago
Other questions:
  • 4 11/18-x=1 31/36 whats the answer
    12·1 answer
  • Start time_________
    7·2 answers
  • Find the volume of the pyramid. Round your answer to the nearest tenth.
    15·1 answer
  • John can eat 10 hot dogs in 4 mins. At this rate, how many hot dogs can he eat in 18 mins?
    13·2 answers
  • What is the positive difference between the square of the sum of the first five positive integers and the sum of the first five
    12·1 answer
  • 1. Which inequality represents the following statement? Two times the quantity x plus 4 is greater than 10.
    12·1 answer
  • A. Tape diagram A
    6·1 answer
  • What is measurement of
    11·1 answer
  • Please help, thank you!
    13·1 answer
  • Identify the function shown in this graph. AN -5 4 3 2 1 o A. y = 3x - 2 B. y = 3x + 2 C. y = -3x - 2 D. y = 3x - 2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!