Answer:
The greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Step-by-step explanation:
Consider the table representing the number of heads and tails for all the number of tosses:
Number of tosses n (HEADS) n (TAILS) Ratio
10 3 7 3 : 7
30 14 16 7 : 8
100 60 40 3 : 2
Compute probability of heads for the tosses as follows:

The probability of heads in case of 10 tosses of a coin is -0.20 away from 50/50.

The probability of heads in case of 30 tosses of a coin is -0.033 away from 50/50.

The probability of heads in case of 100 tosses of a coin is 0.10 away from 50/50.
As it can be seen from the above explanation, that as the sample size is increasing the distance between the expected and observed proportion is decreasing.
This happens because, the greater the sample size the better is the estimation. A large sample leads to a more accurate result.
9^2 < 6^2 + 8^2
so its acute angled.
Answer:
An apple, potato, and onion all taste the same if you eat them with your nose plugged
Step-by-step explanation:
The width is five feet and the length is seven feet.
Answer:
After a translation, the measures of the sides and angles on any triangle would be the same since translation only involves changing the coordinates of the vertices of the triangle.
After a rotation, the measures of the sides and angles of a triangle would also be the same. Similar to translation, the proportion of the triangle is unchanged after a rotation.
After a reflection, the triangle's sides and angles would still be the same since reflection is a rigid transformation and the proportion of the sides and angles are not changed.
Step-by-step explanation:
Rigid transformations, i.e. translations, rotations, and reflections, preserve the side lengths and angles of any figure. Therefore, after undergoing a series of rigid transformations, the side lengths and angle measures of any triangle will be the same as the original triangle, generally speaking, in another position.