Answer:
Option A
Step-by-step explanation:
The complete question is shown in the attachment.
The sum of angles in a triangle is 180 degrees.
This implies that:

m<A+138=180
m<A=180-138=42
Now we use the sine rule to find AC=b

This implies that:


D is the correct answer 0.3234
Because when we draw a point ,we draw a very very small line....one can see how this might lead to a problem.consider a line that is 1 inch long,what we want to looked at 1/1000 through that line it would still be a line.but,if we drew it ,it would look like a point....
Answer:
0.25
Step-by-step explanation:
Answer: 37 units
Step-by-step explanation:
This also works as the height of the triangle.
This also works as the base of the triangle.
Let's call pink ''a'', and blue ''b''. The side we're looking for ''c'' is the hypothenuse.
To find the values of a and b, use the area formula of a square and solve for a side. In this case, since we're going to need the squared values, this step can be omitted.

![s=\sqrt[]{A}](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7BA%7D)
Let's work with Blue.
![s=\sqrt[]{144units^2} \\s=12units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B144units%5E2%7D%20%5C%5Cs%3D12units)
Now Pink.
![s=\sqrt[]{1225units^2}\\s=35units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B1225units%5E2%7D%5C%5Cs%3D35units)
So we have a triangle with a base of 35 units and a height of 12 units.
Now let's use the pythagoream's theorem to solve.
![c^2=a^2+b^2\\c=\sqrt[]{a^2+b^2} \\c=\sqrt[]{(12units)^2+(35units)^2}\\c=\sqrt[]{144units^2+1225units^2}\\ c=\sqrt[]{1369units^2}\\ c=37units](https://tex.z-dn.net/?f=c%5E2%3Da%5E2%2Bb%5E2%5C%5Cc%3D%5Csqrt%5B%5D%7Ba%5E2%2Bb%5E2%7D%20%5C%5Cc%3D%5Csqrt%5B%5D%7B%2812units%29%5E2%2B%2835units%29%5E2%7D%5C%5Cc%3D%5Csqrt%5B%5D%7B144units%5E2%2B1225units%5E2%7D%5C%5C%20c%3D%5Csqrt%5B%5D%7B1369units%5E2%7D%5C%5C%20c%3D37units)