Answer:
y=3
Step-by-step explanation:
it says that y is the inverse of x so if x=3 and y=8, so if x=8 than y must equal 3
Y 4 times 5 = square 5 divided by 6 = x times B so the anwser is sq 9
Answer:
Step-by-step explanation:
Assuming there is a punitive removal of one point for an incorrect response.
Five undiscernable choices: 20% chance of guessing correctly -- Expectation: 0.20*(1) + 0.80*(-1) = -0.60
Four undiscernable choices: 25% chance of guessing correctly -- Expectation: 0.25*(1) + 0.75*(-1) = -0.50
I'll use 0.33 as an approzimation for 1/3
Three undiscernable choices: 33% chance of guessing correctly -- Expectation: 0.33*(1) + 0.67*(-1) = -0.33 <== The approximation is a little ugly.
Two undiscernable choices: 50% chance of guessing correctly -- Expectation: 0.50*(1) + 0.50*(-1) = 0.00
And thus we see that only if you can remove three is guessing neutral. There is no time when guessing is advantageous.
One Correct Answer: 100% chance of guessing correctly -- Expectation: 1.00*(1) + 0.00*(-1) = 1.00
Answer:
![Var(X) = E(X^2) -[E(X)]^2 = 4.97 -(1.61)^2 =2.3779](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%204.97%20-%281.61%29%5E2%20%3D2.3779)
And the deviation would be:

Step-by-step explanation:
For this case we have the following distribution given:
X 0 1 2 3 4 5 6
P(X) 0.3 0.25 0.2 0.12 0.07 0.04 0.02
For this case we need to find first the expected value given by:

And replacing we got:

Now we can find the second moment given by:

And replacing we got:

And the variance would be given by:
![Var(X) = E(X^2) -[E(X)]^2 = 4.97 -(1.61)^2 =2.3779](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%204.97%20-%281.61%29%5E2%20%3D2.3779)
And the deviation would be:

6 bc if you divide 56 by 9 you’ll get 6.2 but i’m not sure the ( .2 ) will matter therefore just get the first digit which is 6