Answer:
18.4 m
Explanation:
(a)
The known variables in this problem are:
u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)
t = 1.8 s is the duration of the fall
a = g = 9.8 m/s^2 is the acceleration due to gravity
(b)
The vertical distance covered by the life preserver is given by

If we substitute all the values listed in part (a), we find

Answer:

Given:
Initial velocity (u) = 30 m/s
Final speed (v) = 0 m/s
Acceleration (a) = - 1.5 m/,s²
To Find:
Time in which train will come to rest (t).
Explanation:

So,
Time in which train will come to rest = 20 seconds
Answer:1.5×10 to the power of 17(unit-Hertz/H)
Explanation:V=F×Wavelength
F=V/Wavelength=3×10 to power/2×10 to power of -9=1.5×10 to power of 17
The elastic potential energy stored in the car's spring during the process is 3.75 J
<h3>Determination of the spring constant</h3>
From the question given above, the following data were obtained:
K = F/e
K = 15 / 0.5
K = 30 N/m
<h3>Determination of the potential energy</h3>
- Spring constant (K) = 30 N/m
PE = ½Ke²
PE = ½ × 30 × 0.5²
PE = 15 × 0.25
PE = 3.75 J
Therefore, the elastic potential energy stored in the car's spring during the process is 3.75 J
Learn more about energy stored in spring:
brainly.com/question/4280346