Suppose the chemist uses <em>x</em> mL of the 8% acid solution, and <em>y</em> mL of the 5% solution.
The chemist wants to end up with a 500 mL solution, so
<em>x</em> + <em>y</em> = 500
and wants this solution to have a concentration of 6.8% acid. This means 6.8% of this volume should be acid. By volume, the 8% solution contributes 0.08<em>x</em> mL of acid, and the 5% solution contributes 0.05<em>y</em> mL, so
0.08<em>x</em> + 0.05<em>y</em> = 0.068(<em>x</em> + <em>y</em>) = 0.068 * 500 = 34
Now,
<em>y</em> = 500 - <em>x</em>
0.08<em>x</em> + 0.05(500 - <em>x</em>) = 34
0.08<em>x</em> + 25 - 0.05<em>x</em> = 34
0.03<em>x</em> = 9
<em>x</em> = 300
The chemist must use 300 mL of the 5% solution.