34.12 thirty four=34 and=. twelve hundredths=.12
In a quadratic equation
q(x) = ax^2 + bx + c
The discriminant is = b^2 - 4ac
We have that discriminant = 3
If
b^2 - 4ac > 0, then the roots are real.
If
b^2 - 4ac < 0 then the roots are imaginary
<span>In
this problem b^2 - 4ac > 0 3 > 0 </span>
then
the two roots must be real
Answer:
26
Step-by-step explanation:
if you can get 8 oranges for 10.40 then divide 10.40 by 8. you can get each orange for 1.3. you need to know how many oranges you can get for 33.8 so divide that by 1.3 and you get 26
Answer:
i.e answer A.
Step-by-step explanation:
This question involves knowing the following power/exponent rule:
![\sqrt[n]{x^m} = x^\frac{m}{n} \\\\so \sqrt[7]{x^2} = x^\frac{2}{7} \\\\and \\\\ \sqrt[5]{y^3} = y^\frac{3}{5} \\](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Em%7D%20%3D%20x%5E%5Cfrac%7Bm%7D%7Bn%7D%20%5C%5C%5C%5Cso%20%5Csqrt%5B7%5D%7Bx%5E2%7D%20%3D%20x%5E%5Cfrac%7B2%7D%7B7%7D%20%5C%5C%5C%5Cand%20%20%5C%5C%5C%5C%20%5Csqrt%5B5%5D%7By%5E3%7D%20%3D%20y%5E%5Cfrac%7B3%7D%7B5%7D%20%5C%5C)
Next, when a power is on the bottom of a fraction, if we want to move it to the top, this makes the power become negative.
so the y-term, when moved to the top of the fraction, becomes:

So the answer is: 