174 baked good must be sold to profit at least $200.
6:20=9:30=3:10=18:60=16:160/3=12:40
Step-by-step explanation:
The question requires you to find value of x in the ratios given;
Start with the first pair
6:20 = 9:x
6/20 =9/x
6x=20*9
6x=180
x=180/6=30 ⇒⇒ 6:20 = 9:30
The second pair after replacing the value of x=30 will be
9:30 = x:10
9/30=x/10
90=30x
90/30 =x
3=x⇒⇒ 9:30 = 3:10
The third pair after replacing value of x=3 will be
3:10 =x:60
3/10 =x/60
180=10x
180/10 =x
18=x ⇒⇒ 3:10 = 18:60
The fourth pair after replacing value of x=18 will be;
18:60 = 16:x
18/60 = 16/x
18x=16*60
x= (16*60)/18 =160/3
x= 160/3 ⇒⇒⇒ 18:60 = 16: 160/3
The firth pair after replacing value of x=160/3 will be;
16: 160/3 =12:x
16x= 160/3 *12
16x = 160 * 4
x= (160 *4 )/16
x=40
⇒⇒ 16: 160/3 = 12: 40
Learn More
Ratios and proportions :brainly.com/question/9512748
Keywords : ratio, value of x, proportion
#LearnwithBrainly
Let 2x – y = 3 ——— equation 1
Let x + 5y = 14 ——— equation 2
Making x the subject in eqn 1, = x = y + 3 / 2 ——— eqn 3
• Put eqn 3 in eqn 2
(y + 3 / 2) + 5y = 14
6y = 14 – 3/2
6y = 25/2
y = 25/12
• put y = 25/12 in eqn 3
x = (25/12 + 3/2)
x = 43/12
As they are similar figures,we can use the ratio of the side to find out the value of z.
The only side that both have the value indicated is 4 and 6,therefore we would use it to find the ratio.
The eqaution would be:
6/4 = z/8
3/2 = z/8
3×8 = 2z
z = 24/2
z = 12
Thus the value of z is 12.
Hope it helps!
<h2>
Hello!</h2>
The answer is:
The second option,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Why?</h2>
Discarding each given option in order to find the correct one, we have:
<h2>
First option,</h2>
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[2m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5B2m%5D%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5Bm%5D%7Bxy%7D)
<h2>
Second option,</h2>
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
The statement is true, we can prove it by using the following properties of exponents:

![\sqrt[n]{x^{m} }=x^{\frac{m}{n} }](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%20%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%20%7D)
We are given the expression:
![(\sqrt[m]{x^{a} } )^{b}](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D)
So, applying the properties, we have:
![(\sqrt[m]{x^{a} } )^{b}=(x^{\frac{a}{m}})^{b}=x^{\frac{ab}{m}}\\\\x^{\frac{ab}{m}}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%28x%5E%7B%5Cfrac%7Ba%7D%7Bm%7D%7D%29%5E%7Bb%7D%3Dx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%5C%5C%5C%5Cx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Hence,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Third option,</h2>
![a\sqrt[n]{x}+b\sqrt[n]{x}=ab\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3Dab%5Csqrt%5Bn%5D%7Bx%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![a\sqrt[n]{x}+b\sqrt[n]{x}=(a+b)\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3D%28a%2Bb%29%5Csqrt%5Bn%5D%7Bx%7D)
<h2>
Fourth option,</h2>
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=m\sqrt{xy}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3Dm%5Csqrt%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=\sqrt[m]{\frac{x}{y} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3D%5Csqrt%5Bm%5D%7B%5Cfrac%7Bx%7D%7By%7D%20%7D)
Hence, the answer is, the statement that is true is the second statement:
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Have a nice day!