This scenario best illustrate Backward vertical integration
Explanation:
Backward integration is a vertical integration that extends the role of a organization to perform roles traditionally performed by firms in the supply chain.
In other terms, backward integration is where an enterprise imports another company providing the necessary goods or services for production.
For examples, an company might purchase the product or raw materials manufacturer. Businesses often complete retrograde incorporation of these other businesses or combine of them. However, they may set up their own divisions to perform this mission.
Jeffries Corporation's Operating Income from the two products is <em>A. $35,000.</em>
The operating income is the difference between the revenue and operating costs (variable and fixed costs).
Data and Calculations:
Product A Product B Total
Revenue $18.00 $21.00
Variable cost 14.00 13.00
Contribution $4.00 $8.00
Fixed costs $143,000
Total sales units 35,600
Sales mix 3 1 4
Sales units 26,700 8,900 35,600
Total contribution$106,800 $71,200 $178,000
Total fixed costs 143,000
Operating income $35,000
Thus, the operating income is $35,000.
Read more: brainly.com/question/14815746
Answer:
Following are the solution to the given points:
Explanation:
For point a:
After-tax profit for each country.
For Country X:
![Tax \ [ 2,500,000 \times 20\% \ ] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 500,000\\\\ After-tax\ \ profit\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2,000,000](https://tex.z-dn.net/?f=Tax%20%5C%20%5B%202%2C500%2C000%20%5Ctimes%2020%5C%25%20%5C%20%5D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20500%2C000%5C%5C%5C%5C%20After-tax%5C%20%5C%20profit%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%202%2C000%2C000)
For Country Y:

![Pre-tax\ \ Profit \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2,200,000\\\\Tax\ [40,00,000 \times 10\%] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 400,000 \\\\After-tax\ \ profit \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1,800,000](https://tex.z-dn.net/?f=Pre-tax%5C%20%5C%20Profit%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%202%2C200%2C000%5C%5C%5C%5CTax%5C%20%20%5B40%2C00%2C000%20%5Ctimes%2010%5C%25%5D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20400%2C000%20%5C%5C%5C%5CAfter-tax%5C%20%5C%20profit%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%201%2C800%2C000)
For point b:
For Country X:
Lardo is expected to establish its new plant in Country X, because Country X's after tax income is higher than Country y's after-tax income [$1,800,000].
Answer:
$81.52
Explanation:
In this question, we are asked to state the price to pay for a stock at this present day.
To calculate this, we compute it mathematically.
Mathematically, we have;
dividend/(1+required return rate)^year
we then add together
we have
=3/(1.12) + 4.25/(1.12)^2 + 6/(1.12)^3 + 100/(1.12)^3 = 81.52
<span>Transactions that are included in continuing operations are income from revenue,expenses, gains and losses.These are the components that will probably continue in future periods. It is important to segregate income from continuing operations from other transactions that affecting net income, because the information will help analysts predicts future cash flows.</span>