Answer:
34.6 units
Step-by-step explanation:
The lenght of fencing required is the total distance between point A to B, B to C, C to D, and D to A. That is the distance between all 4 corners of the meadow.
The coordinates of the corners of the meadow is shown on a coordinate plane in the attachment. (See attachment below).
Let's use the distance formula to calculate the distance between the 4 corners of the meadow using their coordinates as follows:
Distance between point A(-6, 2) and point B(2, 6):

Let,





(nearest tenth)
Distance between B(2, 6) and C(7, 1):

Let,





(nearest tenth)
Distance between C(7, 1) and D(3, -5):

Let,





(nearest tenth)
Distance between D(3, -5) and A(-6, 2):

Let,





(nearest tenth)
Length of fencing required = 8.9 + 7.1 + 7.2 + 11.4 = 34.6 units
Answer:
- as written, c ≈ 0.000979 or c = 4
- alternate interpretation: c = 0
Step-by-step explanation:
<em>As written</em>, you have an equation that cannot be solved algebraically.
(32^2)c = 8^c
1024c = 8^c
1024c -8^c = 0 . . . . . . rewrite as an expression compared to zero
A graphical solution shows two values for c: {0.000978551672551, 4}. We presume you're interested in c = 4.
___
If you mean ...
32^(2c) = 8^c
(2^5)^(2c) = (2^3)^c . . . . rewriting as powers of 2
2^(10c) = 2^(3c) . . . . . . . simplify
10c = 3c . . . . . . . . . . . . . .log base 2
7c = 0 . . . . . . . . . . . . . . . subtract 3c
c = 0 . . . . . . . . . . . . . . . . divide by 7
Step-by-step explanation:
(f○g)(7)
= f(g(7))
g(7) = 7 + 2
= 9
f(9) = 4(9) .....
......
Answer:
Option B. 
Step-by-step explanation:
step 1
Find the central angle of the shaded sector
Remember that the diameter divide the circle into two equal parts ( 180 degrees each part)
so
Let
x -----> the measure of the central angle of the shaded sector
∠x+72°=180°
∠x=180°-72°=108°
step 2
Find the area of the circle
The area of the circle is

we have

assume

substitute


step 3
Find the area of the shaded sector
Remember that the area of the complete circle subtends a central angle of 360 degrees
so
by proportion find the area of a sector by a central angle of 108 degrees
