Answer:
∠1 ≅ ∠2 ⇒ proved down
Step-by-step explanation:
#12
In the given figure
∵ LJ // WK
∵ LP is a transversal
∵ ∠1 and ∠KWP are corresponding angles
∵ The corresponding angles are equal in measures
∴ m∠1 = m∠KWP
∴ ∠1 ≅ ∠KWP ⇒ (1)
∵ WK // AP
∵ WP is a transversal
∵ ∠KWP and ∠WPA are interior alternate angles
∵ The interior alternate angles are equal in measures
∴ m∠KWP = m∠WPA
∴ ∠KWP ≅ ∠WPA ⇒ (2)
→ From (1) and (2)
∵ ∠1 and ∠WPA are congruent to ∠KWP
∴ ∠1 and ∠WPA are congruent
∴ ∠1 ≅ ∠WPA ⇒ (3)
∵ WP // AG
∵ AP is a transversal
∵ ∠WPA and ∠2 are interior alternate angles
∵ The interior alternate angles are equal in measures
∴ m∠WPA = m∠2
∴ ∠WPA ≅ ∠2 ⇒ (4)
→ From (3) and (4)
∵ ∠1 and ∠2 are congruent to ∠WPA
∴ ∠1 and ∠2 are congruent
∴ ∠1 ≅ ∠2 ⇒ proved
Answer:
1/2 X + X -15 + 1/2 X + 100 + X -25 = 540
1/2x + x + 1/2x + x -15 + 100 -25 = 540
3 x + 60 = 540
3x + 60 - 60 = 540 - 60
3/3x = 480/3
x = 160
Step-by-step explanation:
1/2 X + X -15 + 1/2 X + 100 + X -25 = 540
1/2x + x + 1/2x + x -15 + 100 -25 = 540
3 x + 60 = 540
3x + 60 - 60 = 540 - 60
3/3x = 480/3
x = 160
I hope this helps you
-14+?= -17
?= -17+14
?= -3
Answer:
3(x + 4) = 3(x) + 3(4)
3(x + 4) = 3x + 12
3x + 12 = 3x + 12
Subtract 12 from both sides
3x + 12 - 12 = 3x + 12 - 12
3x = 3x
3x - 3x = 3x - 3x
= 0