Answer:
Let lo be the length of the rod in the frame in which it is at rest and s' is the frame which is moving with a speed 0.8c in a direction making an angle 60° with x-axis. The components of lo along and perpendicular to the direction of motion are lo cos 60° and lo sin 60° respectively.
Now length of the rod along the direction of motion
= lo cos 60°_/1-(0.8) 2/c2
= lo/2×0.6
= 0.3 lo.
Length of the rod perpendicular to the direction of motion.
= lo sin 60°
=_/3/2 lo
Length of moving rod
l = [(0.3lo)2+{lo_/3/2} 2] 1/2
= 0.916 lo.
Percentage contraction
= lo-0.916lo/lo×100
= 8.4%.
Explanation:
<h2><u><em>
Brainliest?</em></u></h2>
The correct answer for the question that is being presented above is this one: "<span>c. Planets orbit in elliptical patterns; a planet's orbit covers equal areas in equal amounts of time; planets' orbits are shorter or longer depending on their distance from the Sun."</span>
Here are the following choices:
a. Planets orbit in elliptical patterns; the bigger the planet, the more gravitational pull; a planet's gravitational pull is stronger or weaker depending on its distance from the Sun.
b. A planet's orbit covers equal distances in equal amounts of time; the speed of a planet's orbit depends on its distance from the Sun; the bigger the planet, the slower it moves.
c. Planets orbit in elliptical patterns; a planet's orbit covers equal areas in equal amounts of time; planets' orbits are shorter or longer depending on their distance from the Sun.
It might be 144.2 m but i’m not for sure:)
<u>B</u> option is correct .
The answer is C in this question.