Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
They are called stem cells. This cells are undifferentiated which means it can specialize in other types when it receives the right stimuli. They can divide through mitoses and become more stem cell or become a bone, muscle, blood cell, etc.
They can have 2 origins: embryos or some human tissue; their function is to regenerate or substitute damaged cells
Answer:Half-life is the amount of time it takes for the initial mass of the isotope to decompose, by half, into other lighter atoms.
Explanation:Different radioactive isotopes have different half-lives. For example, the element technetium-99m has a half life of 6 hours. This means that is 100 kg of the element is left to decay, in 6 hours, 50kg of the mass will have changed into other elements/atoms. The half-life of uranium-238 is 4.5 billion years while that of polonium-216 is only 0.145 seconds.
Answer:
Angular acceleration will be 
Explanation:
We have given that mass m = 0.18 kg
Radius r = 0.32 m
Initial angular velocity 
And final angular velocity 
Time is given as t = 8 sec
From equation of motion
We know that 


So angular acceleration will be 