1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatuchka [14]
2 years ago
6

What is the resistance at 20°C of a 2.0-meter length of tungsten wire with a cross-sectional area of 7.9 10^-7

Physics
1 answer:
Bad White [126]2 years ago
8 0

Answer:

1.4 * 10 ^-1 Ω

Explanation:

Hi,

For this question, we gotta use the formula

R = pL/A

p = The resistivity of your material at 20°C

L = length of the wire

A = cross-sectional area

The resistivity of tungsten is 5.60 * 10^-8 at 20°C

By plugging the values, we get:

R = (5.60 * 10^-8)(2.0)/(7.9*10^-7) = 1.4 * 10 ^-1 Ω

You might be interested in
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
2 years ago
What will be the force if the particle's charge is tripled and the electric field strength is halved? Give your answer in terms
Alexus [3.1K]

Answer:

1.5F

Explanation:

Using

E= F/q

Where F= force

E= electric field

q=charge

F= Eq

So if qis tripled and E is halved we have

F= (E/2)3q

F= 1.5Eq=>> 1.5F

4 0
2 years ago
A nasa spacecraft measures the rate r of at which atmospheric pressure on mars decreases with altitude. the result at a certain
Lesechka [4]

Answer:4.21 \times 10^{-10} J/cm^4

1 kPa= 10^3 Pa

1 km=10^5 cm

1kPa/km=0.01 Pa/cm

1kPa/km=10^{-8} J/cm^4

\Rightarrow r= 0.0421 kPa/km= 0.0421 kPa/km \times \frac{10^{-8} J/cm^4}{1 kPa/km}= 0.0421 \times 10^{-8}J/cm^4=4.21 \times 10^{-10} J/cm^4

3 0
3 years ago
Read 2 more answers
A radioactive material has a count rate of 400 per minute. It has a half life of 40 years. How long will it take to decay to a r
cestrela7 [59]

Answer:

160 years.

Explanation:

From the question given above, the following data were obtained:

Initial count rate (Cᵢ) = 400 count/min

Half-life (t½) = 40 years

Final count rate (Cբ) = 25 count/min

Time (t) =?

Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:

Initial count rate (Cᵢ) = 400 count/min

Final count rate (Cբ) = 25 count/min

Number of half-lives (n) =?

Cբ = 1/2ⁿ × Cᵢ

25 = 1/2ⁿ × 400

Cross multiply

25 × 2ⁿ = 400

Divide both side by 25

2ⁿ = 400/25

2ⁿ = 16

Express 16 in index form with 2 as the base

2ⁿ = 2⁴

n = 4

Thus, 4 half-lives has elapsed.

Finally, we shall determine the time taken for the radioactive material to decay to the rate of 25 counts per minute. This can be obtained as follow:

Half-life (t½) = 40 years

Number of half-lives (n) = 4

Time (t) =?

n = t / t½

4 = t / 40

Cross multiply

t = 4 × 40

t = 160 years.

Thus, it will take 160 years for the radioactive material to decay to the rate of 25 counts per minute.

7 0
2 years ago
How are solar energy, wind energy and hydroelectric energy related?
spin [16.1K]
Solar energy, wind energy, and hydroelectric energy are all renewable energy
5 0
3 years ago
Read 2 more answers
Other questions:
  • How does friction apply a force to a moving object?
    11·1 answer
  • A long coaxial cable consists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius b
    12·1 answer
  • List two ways that waves erode land
    5·2 answers
  • In 1998, scientists discovered that the expansion of the universe has been accelerating.
    5·2 answers
  • While at the county fair, you decide to ride the Ferris wheel. Having eaten too many candy apples and elephant ears, you find th
    9·1 answer
  • A scientist discovers a fossil of an animal and places it in the fossil record. The organism’s bones are similar to the bones of
    6·1 answer
  • Hey can someone please help answer this question?
    10·1 answer
  • Pls help me Will mark you as brain plssss help me for these 2 questions just say top or bottom for which answers you pick
    13·1 answer
  • 25 points please help PLEASE
    13·1 answer
  • I don’t not get anything to do with this question
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!