Answer:
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Let 'S' be the sample space associated with the drawing of a card
n (S) = 52C₁ = 52
Let E₁ be the event of the card drawn being a king

Let E₂ be the event of the card drawn being a queen

But E₁ and E₂ are mutually exclusive events
since E₁ U E₂ is the event of drawing a king or a queen
<u><em>step(ii):-</em></u>
The probability of drawing of a king or a queen from a standard deck of playing cards
P( E₁ U E₂ ) = P(E₁) +P(E₂)

P( E₁ U E₂ ) = 
<u><em>step(iii):-</em></u>
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards



<u><em>Conclusion</em></u>:-
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Answer:
1
Step-by-step explanation:
When a variable does not have a visible coeffecient then the coefficient is 1. (Double check to make sure I'm correct)
The final grade of fran can be calculated
by multiplying the corresponding percentage of his average homework, quizzes
and tests, then sum it up and it is now the final grade of fran.
Final grade = (0.10 x 92) + ( 0.20 x 68) +
(0.70 x 81)
<span>Final grade = 79.5 </span>