Formula for curvature for a well behaved curve y=f(x) is
K(x)= ![\frac{|{y}''|}{[1+{y}'^2]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%7C%7By%7D%27%27%7C%7D%7B%5B1%2B%7By%7D%27%5E2%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
The given curve is y=7

k(x)=![\frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
![{k(x)}'=\frac{7(e^x)(1+49e^{2x})(49e^{2x}-\frac{1}{2})}{[1+49e^{2x}]^{3}}](https://tex.z-dn.net/?f=%7Bk%28x%29%7D%27%3D%5Cfrac%7B7%28e%5Ex%29%281%2B49e%5E%7B2x%7D%29%2849e%5E%7B2x%7D-%5Cfrac%7B1%7D%7B2%7D%29%7D%7B%5B1%2B49e%5E%7B2x%7D%5D%5E%7B3%7D%7D)
For Maxima or Minima


→
[not possible ∵there exists no value of x satisfying these equation]
→
Solving this we get
x= 
As you will evaluate
<0 at x=
So this is the point of Maxima. we get y=7×1/√98=1/√2
(x,y)=[
,1/√2]
k(x)=![\lim_{x\to\infty } \frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cinfty%20%7D%20%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
k(x)=
k(x)=0
Answer:
Her usual driving speed is 38 miles per hour.
Step-by-step explanation:
We know that:

In which s is the speed, in miles per hour, d is the distance, in miles, and t is the time, in hours.
We have that:
At speed s, she takes two hours to drive. So


However, on one particular trip, after 40% of the drive, she had to reduce her speed by 30 miles per hour, driving at this slower speed for the rest of the trip. This particular trip took her 228 minutes.
228 minutes is 3.8 hours. So

So




Her usual driving speed is 38 miles per hour.
1572455566080 is your answer! Hope I helped! :D
take 16+5=21. 29-21=8 so answer is 8
Answer:
Angle A=Side MT
Angle M=Side AT
Angle T=Side AM
Step-by-step explanation: