Answer:
❤️
Step-by-step explanation:
Answer:
θ = 2 π n_1 + π/2 for n_1 element Z or θ = 2 π n_2 for n_2 element Z
Step-by-step explanation:
Solve for θ:
cos(θ) + sin(θ) = 1
cos(θ) + sin(θ) = sqrt(2) (cos(θ)/sqrt(2) + sin(θ)/sqrt(2)) = sqrt(2) (sin(π/4) cos(θ) + cos(π/4) sin(θ)) = sqrt(2) sin(θ + π/4):
sqrt(2) sin(θ + π/4) = 1
Divide both sides by sqrt(2):
sin(θ + π/4) = 1/sqrt(2)
Take the inverse sine of both sides:
θ + π/4 = 2 π n_1 + (3 π)/4 for n_1 element Z
or θ + π/4 = 2 π n_2 + π/4 for n_2 element Z
Subtract π/4 from both sides:
θ = 2 π n_1 + π/2 for n_1 element Z
or θ + π/4 = 2 π n_2 + π/4 for n_2 element Z
Subtract π/4 from both sides:
Answer: θ = 2 π n_1 + π/2 for n_1 element Z
or θ = 2 π n_2 for n_2 element Z
Answer:
D
Step-by-step explanation:
Slope-intercept form is [ y = mx + b ] where m = slope and b = y-intercept. We are already given the slope and y-intercept so m = 2 and b = -4.
y = 2x - 4
Best of Luck!
Yes, yes it is; well done.
Answer:
Step-by-step explanation:
take 45 degree as reference angle
using sin rule
sin 45=opposite/hypotenuse
1/
=x/26
x=26/
x=13
x=18.4