1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
15

An abscissa point equal to the opposite of three quarters and ordinate equal to two

Mathematics
1 answer:
klemol [59]3 years ago
8 0

Answer:

P(- 3/4, 2)

Step-by-step explanation:

Translating statement

3/4 ... opposite = - 3/4

ordered 2

P(- 3/4, 2)

You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Find the distance between -2/3 and 4/3 on a number line
finlep [7]

Answer:

7

Step-by-step explanation:

3 0
3 years ago
Let u= &lt;4,3&gt;. Find the unit vector in the direction of u, and write your answer in component form.
aksik [14]
Take the vector u = <ux, uy> = <4, 3>.

Find the magnitude of u:

||u|| = sqrt[ (ux)^2 + (uy)^2]

||u|| = sqrt[ 4^2 + 3^2 ]

||u|| = sqrt[ 16 + 9 ]

||u|| = sqrt[ 25 ]

||u|| = 5

To find the unit vector in the direction of u, and also with the same sign, just divide each coordinate of u by ||u||. So the vector you are looking for is

u/||u||

u * (1/||u||)

= <4, 3> * (1/5)

= <4/5, 3/5>

and there it is.

Writing it in component form:

= (4/5) * i + (3/5) * j

I hope this helps. =)
3 0
3 years ago
Brett is making a fruit salad. The recipe calls for 1 1 2 cups of apple, 3 4 cup of oranges, and 2 3 cup of grapes. How many cup
natita [175]
I believe he made 169 cups of fruit salad, or is it a trick question?
7 0
3 years ago
Read 2 more answers
3(x + 5) = 39 I dont understand this problem
Dvinal [7]
3(x+5)=39
3x+15=39
3x=24
x=8
5 0
3 years ago
Read 2 more answers
Other questions:
  • A receptionist earned $443 a week last year. What was her yearly salary
    6·2 answers
  • −9(t−2)=4(t−15) Pleasee Help Mee
    8·2 answers
  • { 44-[28+(8+5)]} 2.​
    13·2 answers
  • Plz help, no games its already overdue and has to get done!
    7·2 answers
  • Use the given information to find the amount A in the account earning compound interest after 6 years when the principal is $350
    14·1 answer
  • The sum of a number g squared and 4 is greater than or equal to −5.
    14·2 answers
  • When solving for a variable in an equation, what must be achieved as a final answer?
    14·2 answers
  • Home Depot sells paint in 2 sizes. 1 gallon for $13.99 or 5 gallons for $67.45. Which has the cheaper unit rate: 1 gallon or 5 g
    9·1 answer
  • If
    5·1 answer
  • The Kicking Cacti and the Sprinting Stingrays met in their town's annual kickball
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!