Area inside the semi-circle and outside the triangle is (91.125π - 120) in²
Solution:
Base of the triangle = 10 in
Height of the triangle = 24 in
Area of the triangle = ![\frac{1}{2} bh](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20bh)
![$=\frac{1}{2} \times 10\times24](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2010%5Ctimes24)
Area of the triangle = 120 in²
Using Pythagoras theorem,
![\text{Hypotenuse}^2=\text{base}^2+\text{height}^2](https://tex.z-dn.net/?f=%5Ctext%7BHypotenuse%7D%5E2%3D%5Ctext%7Bbase%7D%5E2%2B%5Ctext%7Bheight%7D%5E2)
![\text{Hypotenuse}^2=10^2+24^2](https://tex.z-dn.net/?f=%5Ctext%7BHypotenuse%7D%5E2%3D10%5E2%2B24%5E2)
![\text{Hypotenuse}^2=100+576](https://tex.z-dn.net/?f=%5Ctext%7BHypotenuse%7D%5E2%3D100%2B576)
![\text{Hypotenuse}^2=676](https://tex.z-dn.net/?f=%5Ctext%7BHypotenuse%7D%5E2%3D676)
Taking square root on both sides, we get
Hypotenuse = 23 inch = diameter
Radius = 23 ÷ 2 = 11.5 in
Area of the semi-circle = ![\frac{1}{2}\pi r^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cpi%20r%5E2)
![$=\frac{1}{2} \pi \times (13.5)^2](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cpi%20%5Ctimes%20%2813.5%29%5E2)
Area of the semi-circle = 91.125π in²
Area of the shaded portion = (91.125π - 120) in²
Area inside the semi-circle and outside the triangle is (91.125π - 120) in².