Answer:
64
Step-by-step explanation:
<em>[using calculus] </em>When the function h(t) reaches its maximum value, its first derivative will be equal to zero (the first derivative represents velocity of the ball, which is instantaneously zero). We have
, which equals zero when
. The ball therefore reaches its maximum height when t = 1.5. To find the maximum height, we need to find h(1.5), which is 64 feet.
<em>[without calculus] </em>This is a quadratic function, so its maximum value will occur at its vertex. The formula for the x-coordinate of the vertex is -b/2a, so the maximum value occurs when t = -48/(2*16), which is 1.5. The maximum height is h(1.5), which is 64 feet.
a composit figure is made up of two figures
The question might have some mistake since there are 2 multiplier of t. I found a similar question as follows:
The population P(t) of a culture of bacteria is given by P(t) = –1710t^2+ 92,000t + 10,000, where t is the time in hours since the culture was started. Determine the time at which the population is at a maximum. Round to the nearest hour.
Answer:
27 hours
Step-by-step explanation:
Equation of population P(t) = –1710t^2+ 92,000t + 10,000
Find the derivative of the function to find the critical value
dP/dt = -2(1710)t + 92000
= -3420t + 92000
Find the critical value by equating dP/dt = 0
-3420t + 92000 = 0
92000 = 3420t
t = 92000/3420 = 26.90
Check if it really have max value through 2nd derivative
d(dP)/dt^2 = -3420
2nd derivative is negative, hence it has maximum value
So, the time when it is maximum is 26.9 or 27 hours
Micah spent 28.10 dollars, Jeremy spent 34.82 dollars