Answer:
y=-3/16(x-8)^2+12
Step-by-step explanation:
Refer to the vertex form equation for a parabola:
y=a(x-h)^2+k where (h,k) is the vertex.
Therefore, we have y=a(x-8)^2+12 as our equation so far. If we plug in (16,0) we can find a:
0=a(16-8)^2+12
0=64a+12
-12=64a
-12/64=a
-3/16=a
Therefore, your final equation is y=-3/16(x-8)^2+12
Make an equation system based on the problem
eg. a is the first number and b is the seond number
An equation for "<span>The sum of two numbers is 53" is
</span>⇒ a + b = 53
An equation for "<span>twice the first number minus three times the second number is 26"
</span>⇒ 2a - 3b = 26
<span>
Solve the equations by elimination and subtitution method
Eliminate a to find the value of b
a + b = 53 (multiplied by 2)
2a - 3b = 26
--------------------------------------
2a + 2b = 106
2a - 3b = 26
------------------- - (substract)
5b = 80
b = 80/5
b = 16
Subtitute the value of b to one of the equations
a + b = 53
a + 16 = 53
a = 53 - 16
a = 37
The numbers are 16 and 37</span>
Answer: 4.5 miles
Explanation:
When you draw the situation you find two triangles.
1) Triangle to the east of the helicopter
a) elevation angle from the high school to the helicopter = depression angle from the helicopter to the high school = 20°
b) hypotensue = distance between the high school and the helicopter
c) opposite-leg to angle 20° = heigth of the helicopter
d) adyacent leg to the angle 20° = horizontal distance between the high school and the helicopter = x
2) triangle to the west of the helicopter
a) elevation angle from elementary school to the helicopter = depression angle from helicopter to the elementary school = 62°
b) distance between the helicopter and the elementary school = hypotenuse
c) opposite-leg to angle 62° = height of the helicopter
d) adyacent-leg to angle 62° = horizontal distance between the elementary school and the helicopter = 5 - x
3) tangent ratios
a) triangle with the helicpoter and the high school
tan 20° = Height / x ⇒ height = x tan 20°
b) triangle with the helicopter and the elementary school
tan 62° = Height / (5 - x) ⇒ height = (5 - x) tan 62°
c) equal the height from both triangles:
x tan 20° = (5 - x) tan 62°
x tan 20° = 5 tan 62° - x tan 62°
x tan 20° + x tan 62° = 5 tan 62°
x (tan 20° + tan 62°) = 5 tan 62°
⇒ x = 5 tant 62° / ( tan 20° + tan 62°)
⇒ x = 4,19 miles
=> height = x tan 20° = 4,19 tan 20° = 1,525 miles
4) Calculate the hypotenuse of this triangle:
hipotenuese ² = x² + height ² = (4.19)² + (1.525)² = 19.88 miles²
hipotenuse = 4.46 miles
Rounded to the nearest tenth = 4.5 miles
That is the distance between the helicopter and the high school.
Multiply dollars / unit * units. It is actually a useful thing to know. Many thing are done using the tools this question requires.

Steve takes home 308.56 dollars. The answer is B.