Answer:
The reactivity of the halogen group (group 17) decreases from top to bottom within the group. Fluorine is the most reactive halogen, while iodine is the least. Since chlorine is above bromine, it is more reactive than bromine and can replace it in a halogen replacement reaction.
Explanation:
The molecular formula of quinine is C20H<span>24N2</span>O<span>2. For every 1 mole of quinine molecule, there are 20 moles of carbon. Simply multiplying 6.0 moles by 20, we get, 120 moles.
Therefore, there are 120 moles of carbon in 6.0 moles of quinine.</span>
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
Answer:
the different isotopes vary in their relative abundance in nature