There are three possible results when a plan intersects with a three-dimensional figure and these are:
a point
a line
a plane
The first step in describing the result is to determine first how the plane and the figure intersects.
By applying the theorem of intersecting secants, the measure of angle XYZ is equal to: A. 35°.
<h3>How to determine angle <XYZ?</h3>
By critically observing the geometric shapes shown in the image attached below, we can deduce that they obey the theorem of intersecting secants.
<h3>What is the theorem of
intersecting secants?</h3>
The theorem of intersecting secants states that when two (2) lines intersect outside a circle, the measure of the angle formed by these lines is equal to one-half (½) of the difference of the two (2) arcs it intercepts.
By applying the theorem of intersecting secants, angle XYZ will be given by this formula:
<XYZ = ½ × (m<WZ - m<XZ)
Substituting the given parameters into the formula, we have;
<XYZ = ½ × (175 - 105)
<XYZ = ½ × 70
<XYZ = 35°.
By applying the theorem of intersecting secants, we can infer and logically deduce that the measure of angle XYZ is equal to 35°.
Read more on intersecting secants here: brainly.com/question/1626547
#SPJ1
Hello from MrBillDoesMath!
Answer:
x = 1/2 (1 +\- i sqrt(23))
Discussion:
x \3x - 2 = (x/3)*x - 2 = (x^2)/3 - 2 (*)
1 \3x - 4 = (1/3)x - 4 (**)
(*) = (**) =>
(x^2)/3 -2 = (1/3)x - 4 => multiply both sides by 3
x^2 - 6 = x - 12 => subtract x from both sides
x^2 -x -6 = -12 => add 12 to both sides
x^2-x +6 = 0
Using the quadratic formula gives:
x = 1/2 (1 +\- i sqrt(23))
Thank you,
MrB
Answer:
16
Step-by-step explanation:
18+6=24
24-7=16