Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m
Answer:
0 Nm
Explanation:
Torque is the cross product of the radius vector and the force vector.
τ = r × F
In other words, the magnitude of the torque is equal to the magnitude of the radius times the magnitude of the force times the sine of the angle between them.
τ = rF sin θ
Since F₃ is parallel to the radius vector, θ = 0, so τ = 0.
Answer:
a)
, b) 
Explanation:
a) According to the First Law of Thermodinamics, the system is not reporting any work, mass or heat interactions. Besides, let consider that such box is rigid and, therefore, heat contained inside is the consequence of internal energy.

The internal energy for a monoatomic ideal gas is:

Let assume that cubical box contains just one kilomole of monoatomic gas. Then, the temperature is determined from the Equation of State for Ideal Gases:



The thermal energy contained by the gas is:


b) The physical model for the cat is constructed from Work-Energy Theorem:

The speed of the cat is obtained by isolating the respective variable and the replacement of every known variable by numerical values:



Answer:
d = 23.75 m
The zebra has gone 23.75m after 5 seconds.
Corrected question;
A zebra starts from rest and accelerates at 1.9 m/s2. How far has the zebra gone after 5 seconds.
Explanation:
From the equation of motion;
d = vt + 0.5at^2 .........1
Where;
d = displacement
v = initial velocity = 0
t = time taken= 5 seconds
a = acceleration = 1.9 m/s^2
Substituting the given values into equation 1;
d = 0(5) + 0.5(1.9×5^2)
d = 0.5(1.9×5^2)
d = 23.75 m
The zebra has gone 23.75m after 5 seconds.
Relative wind<span> is defined as the airflow relative to an airfoil.</span>