The number of days in which the air quality index exceed 100 in the year 1988 is 75 days. Then the correct option is B.
<h3>What is a function?</h3>
The function is an expression, rule, or law that defines the relationship between one variable to another variable. Functions are ubiquitous in mathematics and are essential for formulating physical relationships.
The air quality index (AQI) is given by the function.

Where n be the number of days the AQI exceeds 100 in a given year.
For
, then we have

More about the function link is given below.
brainly.com/question/5245372
Answer:
<h2>done please mark me brainliest and follow me lots of love from my heart and soul Darling TEJASWINI SINHA HERE ❤️</h2>
Step-by-step explanation:
Solution: 15/2 = 7.5
7/2 = 3.5
The smaller number = 7.5-3.5 or 4, and the larger number is 7.5+3.5 or 11. Answer.
Answer:
c. C(x) = 88 - 1.75x
Step-by-step explanation:
Let's represent this with an equation. We know that the total number of burgers is 32, and the number of Whoppie Jr. is x, so the number of Whoppie is 32-x.
Each Whoppie costs 2.75, and each Whoppie Jr. costs 1, so multiply the cost by the number to get the equation:
C(x) = 1x + 2.75(32-x)
Now distribute and simplify.
C(x) = 2.75*32 + 1x -2.75x
<u>C(x) = 88 -1.75x</u>
1. Sulfúrico
2. Flúor (hídrico) o (ico)
3. Pos o post (hídrico)
4. yodico o yoridico
5. Permaganico
6. biom (ico)
7. Nitrico
8. Fosforoso
9. Per-color (ico)
10. Flour (ico)
11. Niobico
12. Potasico
13. Titánico
14. Platoso
15. Vanad(ico)
Answer:
Step-by-step explanation:
Considering the expression

Steps to solve



![\lim _{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim _{x\to a}f\left(x\right)}{\lim _{x\to a}g\left(x\right)},\:\quad \lim _{x\to a}g\left(x\right)\ne 0](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5B%5Cfrac%7Bf%5Cleft%28x%5Cright%29%7D%7Bg%5Cleft%28x%5Cright%29%7D%5Cright%5D%3D%5Cfrac%7B%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%7D%7B%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%7D%2C%5C%3A%5Cquad%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5Cne%200)

![\frac{\lim _{x\to \infty \:}\left(\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}\right)}{\lim _{x\to \infty \:}\left(1+\frac{1}{x}\right)}.....[1]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Csqrt%7B9%2B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D-%5Csqrt%7B4%2B%5Cfrac%7B2%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%5Cright%29%7D%7B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%281%2B%5Cfrac%7B1%7D%7Bx%7D%5Cright%29%7D.....%5B1%5D)
As

Solving
![\lim _{x\to \infty \:}\left(\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}\right)....[A]](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Csqrt%7B9%2B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D-%5Csqrt%7B4%2B%5Cfrac%7B2%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%5Cright%29....%5BA%5D)
![\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29)


Also

Solving
![\lim _{x\to \infty \:}\left(\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}\right)......[B]](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Csqrt%7B9%2B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%5Cright%29......%5BB%5D)
![\lim _{x\to a}\left[f\left(x\right)\right]^b=\left[\lim _{x\to a}f\left(x\right)\right]^b](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cright%5D%5Eb%3D%5Cleft%5B%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cright%5D%5Eb)





So, Equation [B] becomes
⇒ 
⇒ 
Similarly, we can find

So, Equation [A] becomes
⇒ 
⇒ 1
Also

Thus, equation becomes

Therefore,
Keywords: limit
Learn more about limit form limit brainly.com/question/1444049
#learnwithBrainly