The most important reaction involved in the reoxidation of NADH is Pyruvate → lactate
Two ATP were generated as a net result of glycolysis, two NAD+ were converted to two NADH + H+, and two glucose molecules were divided into two pyruvate molecules.
Pyruvate will go through a process called fermentation when oxygen is absent.
The NADH + H+ from glycolysis will be recycled back to NAD+ during fermentation, allowing glycolysis to proceed.
NAD+ is converted during the glycolysis process into NADH + H+.
Glycolysis cannot proceed without the presence of NAD+.
The NADH produced during glycolysis will be oxidised to create new NAD+ during aerobic respiration, when it will be used once more in glycolysis.
Pyruvate will undergo oxidation in the absence of oxygen or if an organism is unable to engage in aerobic respiration.
Hence The most important reaction involved in the reoxidation of NADH is Pyruvate → lactate
Learn more about Reoxidation here
brainly.com/question/14853085
#SPJ4
I think the answer is thermal!
Hope this helps:)
Brainiest please:)
Answer:
The two-step mechanism is a slow mechanism and a fast mechanism. When we combine them, the result is
2H₂O₂ (aq) ⇒2H₂O (l) + O₂ (g)
Explanation:
We know that the decomposition of hydrogen peroxide is catalyzed by iodide ion, which means that the iodide ion will react with the hydrogen peroxide. There is a slow mechanism and a fast one:
H₂O₂(aq) + I₋(aq) ⇒ H₂O(l) + IO₋(aq) this is the slow reaction
IO₋(aq) + H₂O₂(aq)⇒ H₂O(l) + O₂(g) + I₋ (aq) this is the fast reaction
If we cancel the same type of molecules and ions, the final result is:
2H₂O₂ (aq) ⇒2H₂O (l) + O₂ (g)
Volcanic eruptions are caused by earth's internal heat sources.
All the other choices are atmospheric or external earth.