AS a fraction it would be 8 1/4 hope this helped
We are given : Zeros x=7 and x=4 and leading coefficent 1.
In order to find the quadratic function in standard form, we need to find the factors of quadratic function first and the multiply by given leading coefficent.
For the given zeros x=7 and x=4, we get the factors (x-7) and (x-4).
So, we need to multiply (x-7) and (x-4) by foil method.
We get
(x-7)(x-4) = x*x + x* -4 -7*x -7*-4
x^2 -4x -7x +28.
Combining like terms, we get
-4x-7x = -11x
x^2 -4x -7x +28 = x^2 -11x +28.
Now, we need to multiply x^2 -11x +28 quadratic by leading coefficent 1.
We get
1(x^2 -11x +28) = x^2 -11x +28.
Therefore, the required quadratic function in standard form is x^2 -11x +28.
For this case we have that the relationship is direct.
Therefore, we have:

Where,
y: distance traveled in kilometers
x: number of liters of fuel
k: proportionality constant
We must look for the value of k. For this, we use the following data:
This car can travel 476 kilometers on 17 liters of fuel.
Substituting values we have:

From here, we clear the value of k:

Therefore, the relationship is:

For 1428 kilometers we have:

Clearing the amount of fuel we have:

Answer:
51 liters of fuel are required for the vehicle to travel 1,428 kilometers
Calculater I'm pretty sure
Answer:
(a) AH < HC is No
(b) AH < AC is Yes
(c) △AHC ≅ △AHB is Yes
Step-by-step explanation:
Given
See attachment for triangle
Solving (a): AH < HC
Line AH divides the triangle into two equal right-angled triangles which are: ABH and ACH (both right-angled at H).
To get the lengths of AH and HC, we need to first determine the measure of angles HAC and ACH. The largest of those angles will determine the longest of AH and HC. Since the measure of the angles are unknown, then we can not say for sure that AH < HC because the possible relationship between both lines are: AH < HC, AH = HC and AH > HC
Hence: AH < HC is No
Solving (b): AH < AC
Length AC represents the hypotenuse of triangle ACH, hence it is the longest length of ACH.
This means that:
AH < AC is Yes
Solving (c): △AHC ≅ △AHB
This has been addresed in (a);
Hence:
△AHC ≅ △AHB is Yes