Answer:
(-7,-9) and (7,9)
Step-by-step explanation:7,-9 so we do across the x so you need a graph for this now x goes left so we plot the coordinates in the third box 7,-9 is in the 4 box so after we plotted that you can see it reflects.Now y coordinate since the y line goes up we plot the coordinates on top of the 4 box where our original coordinates stay now it should be 7,9 the y becomes positive which is 9.
This is not a web answer i answered myself took me some time!
Step-by-step explanation:
- <em><u>6</u></em><em><u>4</u></em><em><u>+</u></em><em><u>7</u></em><em><u>2</u></em><em><u>+</u></em><em><u>4</u></em><em><u>x</u></em><em><u>+</u></em><em><u>2</u></em><em><u>0</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em><em><u>(</u></em><em><u>Sum </u></em><em><u>of </u></em><em><u>angles </u></em><em><u>of </u></em><em><u>a </u></em><em><u>triangle </u></em><em><u>)</u></em>
- <em><u>1</u></em><em><u>5</u></em><em><u>6</u></em><em><u>+</u></em><em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em>
- <em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em><em><u>-</u></em><em><u>1</u></em><em><u>5</u></em><em><u>6</u></em>
- <em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>
- <em><u>X=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>4</u></em>
- <em><u>X=</u></em><em><u>6</u></em>
<em><u>Therefore</u></em><em><u> </u></em><em>The </em><em>value</em><em> </em><em>of </em><em>X </em><em>is </em><em>6</em><em> </em><em>degree</em><em>.</em>
Answer:
8 %
Step-by-step explanation:
To find the percent of trees that are over 30 ft tall, take the number of trees that are over 30 ft tall over the number of tree
Percent = trees over 30 ft tall/ total number of trees
= 6/75
=.08
Change this to a percent by multiply by 100%
.08 * 100%
8 %
Answer:
The following are the solution to the given points:
Step-by-step explanation:
for point A:


The set A is not part of the subspace 
for point B:


The set B is part of the subspace
for point C:

In this, the scalar multiplication can't behold

∉ C
this inequality is not hold
The set C is not a part of the subspace
for point D:

The scalar multiplication s is not to hold
∉ D
this is an inequality, which is not hold
The set D is not part of the subspace 
For point E:

The
is the arbitrary, in which
is arbitrary

The set E is the part of the subspace
For point F:

The
arbitrary so, they have
as the arbitrary 
The set F is the subspace of 