Answer:
part A) The scale factor of the sides (small to large) is 1/2
part B) Te ratio of the areas (small to large) is 1/4
part C) see the explanation
Step-by-step explanation:
Part A) Determine the scale factor of the sides (small to large).
we know that
The dilation is a non rigid transformation that produce similar figures
If two figures are similar, then the ratio of its corresponding sides is proportional
so
Let
z ----> the scale factor

The scale factor is equal to

substitute

simplify

Part B) What is the ratio of the areas (small to large)?
<em>Area of the small triangle</em>

<em>Area of the large triangle</em>

ratio of the areas (small to large)

Part C) Write a generalization about the ratio of the sides and the ratio of the areas of similar figures
In similar figures the ratio of its corresponding sides is proportional and this ratio is called the scale factor
In similar figures the ratio of its areas is equal to the scale factor squared
Answer:
Try this formula: length x width x height then you will find the answe. Hope this helps!
Answer:
8
Step-by-step explanation:
Divide 30 by 3.75 to get 8.
Hope that this helps!
Answer:
Step-by-step explanation:
each zero of the function will have a factor of (x - x₀)
h(x) = a(x + 3)(x + 2)(x - 1)
h(x) = a(x + 3)(x² + x - 2)
h(x) = a(x³ + 4x² + x - 6)
or the third option works if a = 1
however this equation gives us the points (0, -6) and (-1. -4), so "a" must be -2
h(x) = -2x³ - 8x² - 2x + 12
to fit ALL of the given points as it fits the three zeros and also h(0) and h(-1) so I guess that is why the given group is a <u><em>partial</em></u> set of solution sets
3s = 5s - 10
-2s = -10
S = 5
S is the cost per pack in dollars