Answer: A. The wrong region is shaded
Step-by-step explanation:
Let's solve for y in the first equation.
3x−2y<−5
Step 1: Add -3x to both sides.
3x−2y+−3x<−5+−3x
−2y<−3x−5
Step 2: Divide both sides by -2.
< 
y > 
graph the equation using the slope
and the y-intercept 
The line is dotted because it is > (not ≥)
shade in the left side by plugging in (0,0) into x and y and finding
0 is not > than
. This means you shade in the side not include the origin.
Do this same thing for the next equation.
Let's solve for y in the second equation.
x+4y>8
Step 1: Add -x to both sides.
x+4y+−x>8+−x
4y>−x+8
Step 2: Divide both sides by 4.
> 
y > 
graph the equation using the slope
and the y-intercept 2
(Dotted line), (plug in 0,0 and find 0 is not > than 2. So shade the region not including the origin (0,0).
Hope this helps.
All you need to do is start from the last zero and move up from however many zeros there are (this time it's 100) moving the zero back 2 places gives you the answer of 70
Answer:
y=2x-2
Step-by-step explanation:
The slope is 2 and your y intercept is already given as -2.
Slope intercept is basically y=mx+b
plug it in so you get y=2x-2
Answer:
It graphs as a line: y will always equal 1.
Step-by-step explanation:
f(x) = 1^x will always equal 1
example:
f(2) = 1^2 = 1 * 1 = 1
f(3) = 1^3 = 1 * 1 * 1 = 1
...
f(100) = 1^100 = 1
No matter how many times you re-multiply, 1 times 1 will always equal 1.
Answer: 0.107
Step-by-step explanation:
En una caja tenemos 8 canicas.
5 son rojas
3 son verdes.
Se retira una canica, y no se remplaza.
Quiero calcular la probabilidad de sacar dos canicas verdes.
La probabilidad de sacar una canica verde en el primer intento, es igual al cociente entre el numero de canicas verdes y el numero total de canicas.
p1 = 3/8
Ahora, en el segundo intento, en la caja voy a tener 2 canicas verdes (por que ya saque una) y 7 canicas en total. Entonces la probabilidad va a ser:
p2 = 2/7.
Y la probabilidad conjunta (es decir, la probabilidad de sacar las dos canicas de color verde) va a ser igual al producto de las probabilidades individuales.
P = p1*p2 = (3/8)*(2/7) = 0.107