Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
Explanation:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
Answer:
A. O=C=O and O≡C−O
Explanation:
Resonance:
When the electron distribution on the molecule become uneven like one molecule have more electron compare to other.Resonance occurs due to overlap of the orbitals.When electron flow through pi system then resonance occurs.
So the option A is correct.
A. O=C=O and O≡C−O
<u>Answer:</u>
(a): The expression of equilibrium constant is ![K_{eq}=\frac{[NO]^2}{[N_2][O_2]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BNO%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%7D)
(b): The equation to solve the concentration of NO is ![[NO]=\sqrt{K_{eq}\times [N_2]\times [O_2]}](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Csqrt%7BK_%7Beq%7D%5Ctimes%20%5BN_2%5D%5Ctimes%20%5BO_2%5D%7D)
(c): The concentration of NO is 0.0017 M.
<u>Explanation:</u>
The equilibrium constant is defined as the ratio of the concentration of products to the concentration of reactants raised to the power of the stoichiometric coefficient of each. It is represented by the term 
(a):
The given chemical equation follows:

The expression for equilbrium constant will be:
![K_{eq}=\frac{[NO]^2}{[N_2][O_2]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BNO%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%7D)
(b):
The equation to solve the concentration of NO follows:
......(1)
(c):
Given values:

![[N_2]_{eq}=0.166M](https://tex.z-dn.net/?f=%5BN_2%5D_%7Beq%7D%3D0.166M)
![[O_2]_{eq}=0.145M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.145M)
Plugging values in equation 1, we get:
![[NO]=\sqrt{(1.2\times 10^{-4})\times 0.166\times 0.145}](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Csqrt%7B%281.2%5Ctimes%2010%5E%7B-4%7D%29%5Ctimes%200.166%5Ctimes%200.145%7D)
![[NO]=\sqrt{2.88\times 10^{-6}}](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Csqrt%7B2.88%5Ctimes%2010%5E%7B-6%7D%7D)
![[NO]=0.0017 M](https://tex.z-dn.net/?f=%5BNO%5D%3D0.0017%20M)
Hence, the concentration of NO is 0.0017 M.