The heat that creates this temperature change coming from change in the internal energy of the system as per as first law of thermodynamics.
<h3>What is Boyle's law ?</h3>
A law stating that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.
As we know, Boyle's law only works when the gas is kept at a constant temperature
Here,
When volume of gases decreased, it means work done has occurred on the system, so the work done is used for raising internal energy of the gas and the other is released as the thermal energy.
So,
According to 1st law of thermodynamics,
we know Q = ΔU + W i.e, change in internal energy and work done. So this is a reason. Changing temperature occurs.
Learn more about Internal enrgy here ;
brainly.com/question/11278589
#SPJ1
Answer: There are
atoms present in 0.500 mol of
.
Explanation:
According to the mole concept, there are
atoms present in 1 mole of a substance.
In a molecule of
there is only one carbon atom present. Therefore, number of carbon atoms present in 0.500 mol of
are as follows.

Thus, we can conclude that there are
atoms present in 0.500 mol of
.
The choices for this are as follows:
A) gases; solids
B) metals; nonmetals
C) nonmetals; metals
<span>D) reactive; nonreactive
</span>
I think the correct answer is option B. The stair-step line between the pink squares and the yellow squares separates the metals from the nonmetals. Hope this helps.
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>