Answer:
Step-by-step explanation:
The first parabola has vertex (-1, 0) and y-intercept (0, 1).
We plug these values into the given vertex form equation of a parabola:
y - k = a(x - h)^2 becomes
y - 0 = a(x + 1)^2
Next, we subst. the coordinates of the y-intercept (0, 1) into the above, obtaining:
1 = a(0 + 1)^2, and from this we know that a = 1. Thus, the equation of the first parabola is
y = (x + 1)^2
Second parabola: We follow essentially the same approach. Identify the vertex and the two horizontal intercepts. They are:
vertex: (1, 4)
x-intercepts: (-1, 0) and (3, 0)
Subbing these values into y - k = a(x - h)^2, we obtain:
0 - 4 = a(3 - 1)^2, or
-4 = a(2)². This yields a = -1.
Then the desired equation of the parabola is
y - 4 = -(x - 1)^2
Not all info is here. what is the original cost and %off?
Answer:
Neither
Step-by-step explanation:
knowing that the system are y=-x+6 and y=x+2, then: x+2=-x+6; x+x=6-2; 2x=4; x=2, and replacing x in y we have: y=-2+6=4 and y=2+2=4, finally tha solution to sistem is (2,4)
Answer:
<h2>The solution is -9 < x < 17.</h2>
Step-by-step explanation:
|x-4|<13.
The above equation means, whatever the actual value of x is, the value of (x - 4) must be greater than - 13 and less than 13.
Hence, -13 < x - 4 < 13 or, -9 < x < 17. The value of x will be in between -9 and 17. The value of x can not be -9 or 17.
Some of the possible points using this equation are...
(2,14)
(1,10)
(0,6)
(-1,2)
(-2,-2)