Step-by-step explanation:
please mark me as brainlest
Answer: Hello, 6
Therefore, the tenths value of 3.629 remains 6. The following table contains starting numbers close to 3.629 rounded to the nearest 10th.
...
Step-by-step explanation:
Answer:
0.164 = 16.4% probability that at least one color will be missing from the 10 selected balls.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Determine the probability that at least one color will be missing from the 10 selected balls.
Red missing:
Each time, there are 55 + 25 = 80 non-red balls, out of 100. So, in each of the 10 trials, 80% = 0.8 probability of not picking a red ball. The probability that no red ball is picked is given by:
(0.8)^10 = 0.1074
White missing:
55 + 20 = 75 non-white balls, out of 100, in each trial. The probability that no white ball is picked is given by:
(0.75)^10 = 0.0563
Blue missing:
45 non-blue balls, out of 100. The probability that no blue ball is picked is given by:
(0.45)^10 = 0.0003
Total:
0.1074 + 0.0563 + 0.0003 = 0.164
0.164 = 16.4% probability that at least one color will be missing from the 10 selected balls.

well, for both angles A and B we're on the IV Quadrant, meaning, the sine is negative, the cosine is positive, likewise, the opposite side is negative and the adjacent side for the angle is positive.
![\bf cos(A)=\cfrac{\stackrel{adjacent}{3}}{\underset{hypotenuse}{5}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{5^2-3^2}}\implies b = \pm 4 \\\\\\ \stackrel{IV~Quadrant}{b = -4}\qquad \qquad sin(A)=\cfrac{\stackrel{opposite}{-4}}{\underset{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill\\\\ cos(B)=\cfrac{\stackrel{adjacent}{12}}{\underset{hypotenuse}{13}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{13^2-12^2}}\implies b = \pm 5](https://tex.z-dn.net/?f=%5Cbf%20cos%28A%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B3%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bgetting%20the%20opposite%20side%7D%7D%7Bb%3D%5Cpm%5Csqrt%7B5%5E2-3%5E2%7D%7D%5Cimplies%20b%20%3D%20%5Cpm%204%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BIV~Quadrant%7D%7Bb%20%3D%20-4%7D%5Cqquad%20%5Cqquad%20sin%28A%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-4%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%28B%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B12%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B13%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bgetting%20the%20opposite%20side%7D%7D%7Bb%3D%5Cpm%5Csqrt%7B13%5E2-12%5E2%7D%7D%5Cimplies%20b%20%3D%20%5Cpm%205)
![\bf \stackrel{IV~Quadrant}{b = -5}\qquad \qquad sin(B)=\cfrac{\stackrel{opposite}{-5}}{\underset{hypotenuse}{13}} \\\\[-0.35em] ~\dotfill\\\\ sin(A-B)=\cfrac{-4}{5}\cdot \cfrac{12}{13}-\left( \cfrac{3}{5}\cdot \cfrac{-5}{13} \right)\implies sin(A-B)=\cfrac{-48}{65} - \left( \cfrac{-15}{65} \right) \\\\\\ sin(A-B)=\cfrac{-48}{65} + \cfrac{15}{65}\implies sin(A-B)=\cfrac{-33}{65}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7BIV~Quadrant%7D%7Bb%20%3D%20-5%7D%5Cqquad%20%5Cqquad%20sin%28B%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B13%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20sin%28A-B%29%3D%5Ccfrac%7B-4%7D%7B5%7D%5Ccdot%20%5Ccfrac%7B12%7D%7B13%7D-%5Cleft%28%20%5Ccfrac%7B3%7D%7B5%7D%5Ccdot%20%5Ccfrac%7B-5%7D%7B13%7D%20%5Cright%29%5Cimplies%20sin%28A-B%29%3D%5Ccfrac%7B-48%7D%7B65%7D%20-%20%5Cleft%28%20%5Ccfrac%7B-15%7D%7B65%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20sin%28A-B%29%3D%5Ccfrac%7B-48%7D%7B65%7D%20%2B%20%5Ccfrac%7B15%7D%7B65%7D%5Cimplies%20sin%28A-B%29%3D%5Ccfrac%7B-33%7D%7B65%7D)
Answer:
(x, y) ⇒ (x -7, y)
Step-by-step explanation:
The y-coordinates are unchanged. Each x-coordinate of the image is 7 units less than the corresponding pre-image coordinate. As a rule, this is ...
(x, y) ⇒ (x -7, y)