(√3 - <em>i </em>) / (√3 + <em>i</em> ) × (√3 - <em>i</em> ) / (√3 - <em>i</em> ) = (√3 - <em>i</em> )² / ((√3)² - <em>i</em> ²)
… = ((√3)² - 2√3 <em>i</em> + <em>i</em> ²) / (3 - <em>i</em> ²)
… = (3 - 2√3 <em>i</em> - 1) / (3 - (-1))
… = (2 - 2√3 <em>i</em> ) / 4
… = 1/2 - √3/2 <em>i</em>
… = √((1/2)² + (-√3/2)²) exp(<em>i</em> arctan((-√3/2)/(1/2))
… = exp(<em>i</em> arctan(-√3))
… = exp(-<em>i</em> arctan(√3))
… = exp(-<em>iπ</em>/3)
By DeMoivre's theorem,
[(√3 - <em>i </em>) / (√3 + <em>i</em> )]⁶ = exp(-6<em>iπ</em>/3) = exp(-2<em>iπ</em>) = 1
(z-8) (z+2)
What I do to factor is find _x_=-16 and _+_=-6. -8x2=-16 and -8+2=-16. The coordinates for z if you were to graph this would be (8,0) and (-2,0)
Sorry it doesn’t let me press the attachment, therefore I can’t help