find the perimeter of a triangle with sides 15 inches, 15 inches, and 21 inches length
To find the perimeter of a triangle we add all the sides of the triangle
The length of the sides of the triangle are given as 15 inches, 15 inches, and 21 inches
Perimeter of a triangle =
15 inches + 15 inches + 21 inches = 51 inches
So 51 inches is the perimeter
X is 35, if you follow the rules of alternate angles
Answer:
d = 115.4 mi
Step-by-step explanation:
Since it gives us the distance in between the locations, we simply label the distances:
From the Garbage to the Hotel is 58.3 miles.
From the Hotel to the Hardware Store is 57.1 miles.
We are trying to find the distance from the Garbage to the Hardware Store, we simply add the distances between:
58.3 mi + 57.1 mi = 115.4 mi
Answer:
a) the probability that the minimum of the three is between 75 and 90 is 0.00072
b) the probability that the second smallest of the three is between 75 and 90 is 0.396
Step-by-step explanation:
Given that;
fx(x) = { 1/5 ; 50 < x < 100
0, otherwise}
Fx(x) = { x-50 / 50 ; 50 < x < 100
1 ; x > 100
a)
n = 3
F(1) (x) = nf(x) ( 1-F(x)^n-1
= 3 × 1/50 ( 1 - ((x-50)/50)²
= 3/50 (( 100 - x)/50)²
=3/50³ ( 100 - x)²
Therefore P ( 75 < (x) < 90) = ⁹⁰∫₇₅ 3/50³ ( 100 - x)² dx
= 3/50³ [ -2 (100 - x ]₇₅⁹⁰
= (3 ( -20 + 50)) / 50₃
= 9 / 12500 = 0.00072
b)
f(k) (x) = nf(x) ( ⁿ⁻¹_k₋ ₁) ( F(x) )^k-1 ; ( 1 - F(x) )^n-k
Now for n = 3, k = 2
f(2) (x) = 3f(x) × 2 × (x-50 / 50) ( 1 - (x-50 / 50))
= 6 × 1/50 × ( x-50 / 50) ( 100-x / 50)
= 6/50³ ( 150x - x² - 5000 )
therefore
P( 75 < x2 < 90 ) = 6/50³ ⁹⁰∫₇₅ ( 150x - x² - 5000 ) dx
= 99 / 250 = 0.396
Are there answer choices? If not, the older brother will get 5, and the younger sister will get 4.