Answer:
a) To determine the facilities that contribute the most to recycling check the pie chart and select the facility with the largest portion while to determine the facilities that contribute the least to recycling check the pie chart and select the facility with the smallest portion
b) Energy is saved because the products which are recycled usually require less energy to turn them into usable materials
c) It saves energy through recycling. It helps sustains the environment. It decrease the emission of green house gases
Explanation:
The question is not complete
a) Pie chart is the graphical representation of information in which the information is represented in a circle. The circle is divided into segments and the portion with the largest segment has the highest percentage.
To determine the facilities that contribute the most to recycling check the pie chart and select the facility with the largest portion while to determine the facilities that contribute the least to recycling check the pie chart and select the facility with the smallest portion
b) Extraction and processing of raw resources to make end products requires a lot of energy. With recycling energy is saved because the products which are recycled usually require less energy to turn them into usable materials
c) It saves energy through recycling. It helps sustains the environment. It decrease the emission of green house gases.
Answer: The concentration of the acid is 0.01 moles acid/0.040 L = 0.25 moles/L = 0.25 M
Explanation:
Answer:
5.3 × 10⁻³ kg
Explanation:
There is some info missing. I think this is the original question.
<em>A chemist adds 135.0 mL of a 0.21 M zinc nitrate (Zn(NO₃)₂) solution to a reaction flask. Calculate the mass in kilograms of zinc nitrate the chemist has added to the flask. Be sure your answer has the correct number of significant digits.</em>
<em />
We have 135.0 mL of a 0.21 M zinc nitrate (Zn(NO₃)₂) solution. The moles of zinc nitrate are:
0.1350 L × 0.21 mol/L = 2.8 × 10⁻² mol
The molar mass of zinc nitrate is 189.36 g/mol. The mass corresponding to 2.8 × 10⁻² moles is:
2.8 × 10⁻² mol × 189.36 g/mol = 5.3 g
1 kilogram is equal to 1000 grams. Then,
5.3 g × (1 kg/1000 g) = 5.3 × 10⁻³ kg
Answer:
87.54 g of H₂O₂
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 1.55×10²⁴ molecules
Mass of H₂O₂ =.?
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole of H₂O₂
Next, we shall determine the mass of 1 mole of H₂O₂. This can be obtained as follow:
1 mole of H₂O₂ = (2×1) + (2×16)
= 2 + 32
= 34 g
Thus,
6.02×10²³ molecules = 34 g of H₂O₂
Finally, we shall determine mass of H₂O₂ that contains 1.55×10²⁴ molecules. This can be obtained as follow:
6.02×10²³ molecules = 34 g of H₂O₂
Therefore,
1.55×10²⁴ molecules
= (1.55×10²⁴ × 34)/6.02×10²³
1.55×10²⁴ molecules = 87.54 g of H₂O₂
Thus, 87.54 g of H₂O₂ contains 1.55×10²⁴ molecules.
Answer:
0.50 mol
Explanation:
The half-life is <em>the time required for the amount of a radioactive isotope to decay to half that amount</em>.
Initially, there are 8.0 moles.
- After 1 half-life, there remain 1/2 × 8.0 mol = 4.0 mol.
- After 2 half-lives, there remain 1/2 × 4.0 mol = 2.0 mol.
- After 3 half-lives, there remain 1/2 × 2.0 mol = 1.0 mol.
- After 4 half-lives, there remain 1/2 × 1.0 mol = 0.50 mol.