Answer:
Active transport
Explanation:
Sodium-potassium pumps are examples of Active type of cellular transport. Sodium potassium pump exchanges sodium ions from potassium ions through the plasma membrane of animal cells.
Whereas Active transport can be defined as movement of ions and molecules across a cell membrane to the region of higher concentration with the help of enzymes and energy.
Answer:
Mass = 14.3 g
Explanation:
Given data:
Mass of Mg(OH)₂ = 16.0 g
Mass of HCl = 11.0 g
Mass of MgCl₂ = ?
Solution:
Chemical equation:
Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O
Number of moles of Mg(OH)₂ :
Number of moles = mass/ molar mass
Number of moles = 16.0 g/ 58.3 g/mol
Number of moles = 0.274 mol
Number of moles of HCl :
Number of moles = mass/ molar mass
Number of moles = 11.0 g/ 36.5 g/mol
Number of moles = 0.301 mol
Now we will compare the moles of Mg(OH)₂ and HCl with MgCl₂.
Mg(OH)₂ : MgCl₂
1 : 1
0.274 : 0.274
HCl : MgCl₂
2 : 1
0.301 : 1/2×0.301 = 0.150
The number of moles of MgCl₂ produced by HCl are less so it will limiting reactant.
Mass of MgCl₂:
Mass = number of moles × molar mass
Mass = 0.150 × 95 g/mol
Mass = 14.3 g
A CH compound is combusted to produce CO2 and H2O
CnHm + O2 -----> CO2 + H2O
Mass of CO2 = 23.1g
Mass of H2O = 10.6g
Calculate by mass of the compounds
For Carbon C, divide by molecular weight of CO2 and multiply with Carbon
molecular weight. So C in grams = 23.1 x (12.01 / 44.01) = 6.3 g C
For Hydrogen H, divide by molecular weight of H2O and multiply with Hydrogen molecular weight. So H in grams = 10.6 x (2.01 / 18.01) = 0.53 g C
= 1.18 of H
Calculate the moles for C and H
6.3 grams of C x (1 mole/12.01 g C) = 0.524 moles of C
1.18 grams of H x (1 mole/1.008 g H) = 1.17 moles of H
Divides by both mole entities with smallest
C = 0.524 / 0.524 = 1 x 4 = 4
H = 1.17 / 0.524 = 2.23 x 4 = 10
The empirical formula is C4H10.
Explanation:
The halogen family and noble gases are similar in just one particular way, they are groups of non-metals. All members of these two groups are categorized as non-metals.
Here are some of the differences between them;
- Halogens have 7 electrons in their outermost shell whereas noble gases have 8 electrons in theirs.
- Halogens are highly reactive elements, noble gases are non-reactive.
- Halogens are made up of electronegative elements where as noble gases are neither electropositive nor electronegative.
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1