The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.
Answer : The net ionic equation will be:

Explanation :
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The balanced molecular equation will be,

The complete ionic equation in separated aqueous solution will be,

In this equation the species,
are the spectator ions.
By removing the spectator ions , we get the net ionic equation.
The net ionic equation will be:

Moles of Hydrogen present: 100 / 2 = 50 moles
Moles of Nitrogen present: 200 / 28 = 7.14 moles
Hydrogen required by given amount of nitrogen = 7.14 x 3 = 21.42 moles
Hydrogen is excess so we will calculate the Ammonia produced using Nitrogen.
Molar ratio of Nitrogen : Ammonia = 1 : 2
Moles of ammonia = 7.14 x 2 = 14.28 moles