Given the radius r and the tangent line AB, the length of the line OA is 24 units
<h3>How to determine the length OA?</h3>
The radius r and the tangent line AB meet at a right angle.
By Pythagoras theorem, we have:
AB² = OA² + r²
So, we have:
24² = OA² + 7²
Rewrite as:
OA² = 24² - 7²
Evaluate
OA² = 527
Take the square root of both sides
OA = 23
Hence, the length of OA is 24 units
Read more about tangent lines at:
brainly.com/question/14410319
#SPJ1
Answer:
A:
Multiple: 3 * 5 = 15
Add: 7 + the result of step No. 1 = 7 + 15 = 22
Divide: 4 / 2 = 2
Subtract: the result of step No. 2 - the result of step No. 3 = 22 - 2 = 20
Add: the result of step No. 4 + 3 = 20 + 3 = 23
B:
Add: 7 + 3 = 10
Multiple: the result of step No. 1 * 5 = 10 * 5 = 50
Divide: 4 / 2 = 2
Subtract: the result of step No. 2 - the result of step No. 3 = 50 - 2 = 48
Add: the result of step No. 4 + 3 = 48 + 3 = 51
<h2><u>Solu</u><u>tion</u><u>:</u></h2>
360° ÷ 10 ÷ 2 = 18°
So the length of the decagon side is:
10 × tan18° × 2 = 20 × tan18°
The area is: ½ × 20 × tan18° × 10 × 10 = 1000 × tan18°
≈ 324.9
.: <u>3</u><u>2</u><u>4</u><u>.</u><u>9</u> is the final answer.
<em>I</em><em> </em><em>h</em><em>ope</em><em> </em><em>this</em><em> helps</em><em>. </em>
Answer:
1/8
Step-by-step explanation:
1/2 of 1/4 is 1/8
The answer to this is 8.6 repeating