Answer:
I. m = 2401
II. ((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
Step-by-step explanation:
I. Determination of m
x ∆ y = x² − 2xy + y²
2 ∆ − 5 = √m
2² − 2(2 × –5) + (–5)² = √m
4 – 2(–10) + 25 = √m
4 + 20 + 25 = √m
49 = √m
Take the square of both side
49² = m
2401 = m
m = 2401
II. Simplify ((n+1) ∆ y)/n
We'll begin by obtaining (n+1) ∆ y. This can be obtained as follow:
x ∆ y = x² − 2xy + y²
(n+1) ∆ y = (n+1)² – 2(n+1)y + y²
(n+1) ∆ y = n² + 2n + 1 – 2ny – 2y + y²
(n+1) ∆ y = n² + 2n – 2ny – 2y + y² + 1
(n+1) ∆ y = n² – 2ny + y² + 2n – 2y + 1
(n+1) ∆ y = n² – ny – ny + y² + 2n – 2y + 1
(n+1) ∆ y = n(n – y) – y(n – y) + 2(n – y) + 1
(n+1) ∆ y = (n – y + 2)(n – y) + 1
((n+1) ∆ y)/n = [(n – y + 2)(n – y) + 1] / n
((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
The value is already in its simplest form, it cannot be reduced any further.
No solution bc the equations aren't equal to each other
0.0167
Since the decimal is present, start from the left side of the number and move to the right until you hit the first Non-Zero number. That number will be the first significant figure, and the number you will start counting from. That’s the first, the second is next, and lastly the third. You round the LAST significant figure, in this case a 6 followed by a 6, meaning you round UP.