<h3>
Answer:</h3>
150 g Si
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 3.2 × 10²⁴ atoms Si
[Solve] grams Si
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Si - 28.09 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. Instructed to round to 2 sig figs.</em>
149.266 g Si ≈ 150 g Si
I think is B sorry if I’m wrong
Atomic number = protons
Protons = P Electrons = E P = E
Atomic mass = Neutrons + Protons
Atomic number = atomic mass = neutrons
P = E
AM - AN = N
Example:
Calcium = 20 Protons 20P = 20E
Atomic mass - atomic number = neutrons :)
Answer:
ΔHr = -86.73 kJ/mol
Explanation:
Using Hess's law, you can calculate ΔH of any reaction using ΔH°f of products and reactants involed in the reaction.
<em>Hess law: ∑nΔH°f products - ∑nΔH°f reactants = ΔHr</em>
<em>-Where n are moles of reaction-</em>
For the reaction:
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Hess law is:
ΔHr = ΔH°f Fe(OH)₃ - ΔH°f Fe³⁺ - 3×ΔH°f OH⁻
Where:
ΔH°f Fe(OH)₃: −824.25 kJ/mol
ΔH°f Fe³⁺: −47.7 kJ/mol
ΔH°f OH⁻: −229.94 kJ/mol
Replacing:
ΔHr = −824.25 kJ/mol - (−47.7 kJ/mol) - (3×-229.94 kJ/mol)
<em>ΔHr = -86.73 kJ/mol</em>