The reactant in a chemical process known as the limiting reactant controls how much product can be produced. When the limiting reactant is completely used up, the reaction will come to an end.
<h3>
Find the limiting reactant ?</h3>
- As a result of 1 mol Sb4O6 reacting with 6 mol H2SO4, only 0.1 mol Sb4O6 reacts with 0.6 mol H2SO4, leaving only 0.5 mol H2SO4. This indicates that H2SO4 is the limiting reactant and Sb4O6 is present in excess.
- According to your equation, which is balanced, 0.1 mol Sb4O6 should react with 0.6 mol H2SO4, yet there is only 0.5 mol H2SO4 on hand.
- Therefore, only.083 mol of Sb4O6 are reacted.
- The reactant that is present in the limiting amount—the limiting reactant—determines the extent to which a chemical reaction occurs.
- The trick is really quite easy! We employ an augmented matrix to hold the data derived from the balancing equation Sb4O6 + 6H2SO4 --> 2Sb2(SO4)3 + 6H2O.
- Although you are provided 0.5 mol of H2SO4, the reaction requires 0.6 mol. Therefore, the limiting reactant is H2SO4.
- Only 0.0833 mol of Sb4O6 is required, but you have 0.1 mol. Sb4O6 is therefore the extra reactant.
To learn more about limiting reactant refer to:
brainly.com/question/27986321
#SPJ1
In a a cation-exchange resin, the outlet stream leaving the bed will contain
and
.
<h3>
What is cation-exchange resin?</h3>
- A resin or polymer that serves as a medium for ion exchange is known as an ion-exchange resin or cation-exchange resin.
- It is an insoluble matrix (or support structure) made from an organic polymer substrate, typically appearing as tiny (0.25-1.43 mm radius) microbeads that are white or yellowish in color.
- The process is known as cation-exchange resin because the beads are often porous, providing a wide surface area on and inside them where the trapping of ions takes place along with the concomitant release of other ions.
- cation-exchange resin comes in many different varieties. Polystyrene sulfonate is the main ingredient in most commercial resins. Many diverse separation, purification, and decontamination techniques use cation-exchange resin.
- The most typical examples are water filtration and water softening.
To learn more about cation-exchange resin with the given link
brainly.com/question/21052225
#SPJ4
Answer:
1·199 J
Explanation:
Given
Mass of water = 0·814 g = 0·814 ×
kg
Increase in temperature = 0·351 °C
Let the amount of heat added be Q J
Formula for heat added is
<h3>Q = m × s × ΔT</h3>
where Q is the amount of heat transferred
m is the mass
s is the heat capacity
ΔT is the change in temperature
Heat capacity of water = 4200 J/kg °C
Applying the formula for heat added
Q = 0·814 ×
× 4200 × 0·351 = 1·199 J
∴ Amount of heat added = 1·199 J
Answer:
Bond angle is affected by the presence or addition of lone pair of electrons at the central atom. Due to this, the bonds are displaced slightly inside resulting in a decrease of bond angle, and when you remove an electron domain the bond angle increases.
Explanation: