Answer:
The strength of the source charge's electric field could be measured by any other charge placed somewhere in its surroundings. The charge that is used to measure the electric field strength is referred to as a test charge since it is used to test the field strength. The test charge has a quantity of charge denoted by the symbol q.
Explanation:
Electric field strength is a vector quantity; it has both magnitude and direction. The magnitude of the electric field strength is defined in terms of how it is measured. Let's suppose that an electric charge can be denoted by the symbol Q. This electric charge creates an electric field; since Q is the source of the electric field, we will refer to it as the source charge. The strength of the source charge's electric field could be measured by any other charge placed somewhere in its surroundings. The charge that is used to measure the electric field strength is referred to as a test charge since it is used to test the field strength. The test charge has a quantity of charge denoted by the symbol q. When placed within the electric field, the test charge will experience an electric force - either attractive or repulsive. As is usually the case, this force will be denoted by the symbol F. The magnitude of the electric field is simply defined as the force per charge on the test charge.
Hello!

Use the equation KE = 1/2mv² to solve for the kinetic energy of the man.
We are given the mass and velocity, so plug these values into the equation:
KE = 1/2(80)(3²)
KE = 1/2(720)
KE = 360 J
I had this question before I think was it A or B.
Answer:
P and S waves slow down when they reach this layer. The asthenosphere, also known as the magma chamber, is the uppermost component of the mantle. This layer is partially molten and is a ductile zone in a tectonically poor state.
It's almost hard and seismic waves move through the asthenosphere at a slow rate. The fragile lithosphere and the uppermost portion of the asthenosphere are assumed to be rigid.
seismic waves travel more quickly through denser materials and therefore generally travel more quickly with the depth it moves more slowly through a liquid than a solid. Molten areas within the Earth slow down P waves and stop S waves because their shearing motion cannot be transmitted through a liquid. Partially molten areas may slow down the P waves and attenuate or weaken S waves.
hope this helps...
I sort of understand but what does it mean by.... Another?