The correct statements are that the speed decreases as the distance decreases and speed increases as the distance increases for the same time.
Answer:
Option A and Option B.
Explanation:
Speed is defined as the ratio of distance covered to the time taken to cover that distance. So Speed = Distance/Time. In other words, we can also state that speed is directly proportional to the distance for a constant time. Thus, the speed will be decreasing as there is decrease in distance for the same time. As well as there will be increase in speed as the distance increases for the same time. So option A and option B are the true options. So if there is decrease in the distance due to direct proportionality the speed will also be decreasing. Similarly, if the distance increases, the speed will also be increasing.
Answer:
37.8 m
Explanation:
At point 0, the ball is at height y₀.
At point 1, the ball is at height 30 m.
At point 2, the ball is at height 0 m.
Given:
y₁ = 30 m
y₂ = 0 m
v₀ = 0 m/s
a = -10 m/s²
t₂ − t₁ = 1.5 s
Find: y₀
Use constant acceleration equation.
y = y₀ + v₀ t + ½ at²
Evaluate at point 1.
y₁ = y₀ + v₀ t₁ + ½ at₁²
30 m = y₀ + (0 m/s) t₁ + ½ (-10 m/s²) t₁²
30 = y₀ − 5t₁²
Evaluate at point 2.
y₂ = y₀ + v₀ t₂ + ½ at₂²
0 m = y₀ + (0 m/s) t₂ + ½ (-10 m/s²) t₂²
0 = y₀ − 5t₂²
y₀ = 5t₂²
Substitute:
y₀ = 5 (1.5 + t₁)²
y₀ = 5 (2.25 + 3t₁ + t₁²)
y₀ = 11.25 + 15t₁ + 5t₁²
30 = 11.25 + 15t₁ + 5t₁² − 5t₁²
30 = 11.25 + 15t₁
t₁ = 1.25
30 = y₀ − 5t₁²
30 = y₀ − 5(1.25)²
y₀ ≈ 37.8
sorry but i only know of 7 and 8 and the both are true
Answer:
(c) 6.91x10^14 Hz
Explanation:
Find the level energy of n=2 and n=5, using the formula:

where 


To jump from n=2 to n=5 the electron absorbs a photon with energy equal to
, using the next formula to find specific wavelength
to that energy

Where
is the speed of light (
) and
is Planck's constant (
). Solve for
:

The frequency of this wavelength is calculated with this formula:

